27. INORGANIC GEOCHEMISTRY OF SEDIMENTS AND ROCKS RECOVERED FROM THE SOUTHERN ANGOLA BASIN AND ADJACENT WALVIS RIDGE, SITES 530 AND 532, DEEP SEA DRILLING PROJECT LEG 75¹

Walter E. Dean and Nancy L. Parduhn, U.S. Geological Survey, Denver, Colorado

ABSTRACT

Samples of sediments and rocks collected at DSDP Sites 530 and 532 were analyzed for 44 major, minor, and trace elements for the following purposes: (1) to document the downhole variability in geochemistry within and between lithologic units; (2) to document trace-element enrichment, if any, in Cretaceous organic-carbon-rich black shales at Site 530; (3) to document trace-element enrichment, if any, in Neogene organic-carbon-rich sediments at Site 532; (4) to document trace-element enrichment, if any, in Reogene organic-carbon-rich sediments at Site 532; (4) to document trace-element enrichment, if any, in red claystone above basalt basement at Site 530 that might be attributed to hydrothermal activity or weathering of basalt. Results of the geochemical analyses showed that there are no significant enrichments of elements in the organic-carbon-rich sediments at Site 532, but a number of elements, notably Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn, are enriched in the Cretaceous black shales. These elements have different concentration gradients within the black-shale section, however, which suggests that there was differential mobility of trace elements from hydrothermal activity in the red claystone immediately overlying basalt basement at Site 530, but slight enrichments of several elements in the lowest meter of sediment may be related to subsea weathering of basalt.

INTRODUCTION

Three hundred forty-eight samples were collected for inorganic geochemical analyses at Deep Sea Drilling Project (DSDP) Sites 530 (Holes 530A and 530B) and 532 (Holes 532 and 532B) (Fig. 1). The samples were collected with the following purposes in mind:

1) At least one sample was collected from each 9.5-m core, whenever possible, to document the general geochemical variability between and within lithologic units at each of the two sites;

2) Sixty-seven samples of red and green claystone and of black shale were collected from lithologic Unit 8 in Hole 530A in order to examine geochemical differences among these three distinctly colored lithologies that might provide clues as to the mechanism of enrichment of certain trace elements in black shales;

3) Eleven samples of red claystone in an interval of 180 cm above basalt basement in Hole 530A were collected to determine if there was enrichment in any elements that might be attributed to hydrothermal activity or weathering of basalt;

4) Thirty-two samples of light-colored sediment and 27 samples of dark-colored sediment were collected from color cycles in Holes 532 and 532B to determine if there were any geochemical differences that might be used to determine the origin of these cycles.

METHODS

The 348 samples were air-dried and ground to pass a 100-mesh (149 μ m) sieve. Thirty-one of the 348 samples were chosen at random for duplicate analyses; all 379 analytical samples (348 samples plus 31 duplicates) were submitted to the analytical laboratories of the U.S. Geological Survey. The samples were analyzed for 10 major and

minor elements by X-ray fluorescence spectrometry (XRF; Taggart et al., 1980), and 44 major, minor, and trace elements by inductioncoupled, argon-plasma emission spectrometry (ICP; Floyd et al., 1980). Six elements (Al, Fe, Mg, Ca, Na, and Ti) were analyzed by both XRF and ICP. Means and standard deviations for analyses of these six elements by both methods are given in Table 1. The following elements (and their lower detection limits in parts per million) were looked for by ICP but not detected: Ag (20), Au (20), Bi (100), W (50), Ta (50), Pr (50), Sm (30), Eu (10), Gd (10), Tb (100), Ho (10), and Er (10).

Because the samples were air dried, the analytical results for sodium include some sodium that was present in interstitial seawater. Concentrations of Na in samples from hydraulic piston cores (HPC) in Holes 530B, 532, and 532B were corrected for interstitial seawater-Na by using measured water contents and wet-bulk densities (see Physical Properties sections of the site summeries, this volume) and assuming that this interstitial water was normal seawater with a sodium-ion concentration of 10.566 mg/ml. We felt confident in applying this correction to the HPC samples because they are less than 6 m.y. old and have undergone little diagenesis and compaction. We did not feel confident, however, in applying this correction to the rotary-core samples (Hole 530A) because of the highly variable lithology and degree of diagenesis. The maximum interstitial-seawater-sodium in the HPC samples was about 30% of the total sodium. The sodium results for Hole 530A in Table 2 should therefore be used with caution because they contain variable proportions of interstitial seawater-Na.

Results of analyses for Holes 530A, 530B, and 532 plus 532B are given in Tables 2, 3, 4A and 4B respectively, and plotted versus depth in Figures 2, 3, and 4 respectively.

RESULTS

Site 530

Hole 530A was rotary drilled from 125 to 1103 m sub-bottom, ending in 4 cm of highly altered basalt. The top 180 m of sediment at Site 530 was recovered by HPC in Hole 530B.

The contact between altered basalt and the oldest sedimentary unit at Site 530, lithologic Unit 8 (Fig. 2), contains a system of dendritic veinlets of calcite that extend about 5 cm into red claystone of Unit 8 (Site 530, this volume). A 180-cm interval of red claystone immediate-

¹ Hay, W. W., Sibuet, J.-C., et al., *Init. Repts. DSDP*, 75: Washington (U.S. Govt. Printing Office).

Figure 1. General bathymetry of Walvis Ridge and southern Angola Basin off southwestern Africa, and locations of DSDP Sites 362, 530, and 532.

Table 1. Means and standard deviations of concentrations of Al, Fe, Mg, Ca, Na, and Ti in 379 samples from DSDP Sites 530 and 532 determined by both X-ray fluorescence (XRF) and inductioncoupled plasma spectrometry (ICP). (All values are in weight percent.)

Element	Mean (ICP)	S.D. (ICP)	Mean (XRF)	S.D. (XRF)
Al	5.37	2.20	5.03	1.95
Fe	4.13	2.12	4.05	1.97
Mg	1.54	0.75	1.51	0.68
Ca	11.5	10.7	11.1	10.1
Na	1.19	1.72	0.88	1.28
Ti	0.51	0.42	0.50	0.42

ly overlying basalt was sampled at intervals of about 20 cm to determine if the claystone had been enriched in any elements by hydrothermal solutions or from alteration of the basalt. Results of these analyses are discussed in a later section.

Unit 8 consists of 163 m of interbedded red and green claystone and black shale. Individual beds range in thickness from less than 1 cm to several decimeters. Black shale beds comprise about half of the section in Cores 97 and 98 but are minor throughout the rest of the unit (Site 530, this volume). Figure 2 shows that concentrations of most elements are relatively high in Unit 8. Some elements, especially Si, Al, K, B, Sc, Zr, Y, and La, are mostly associated with clay minerals, and their concentrations are high because the clay has not been diluted with CaCO₃. Concentrations of these elements also are high in lithologic Unit 3, which also is clay rich and contains even less $CaCO_3$. Most of the other elements that have high concentrations in Unit 8, especially Co, Cr, Cu, Mo, Ni, Pb, V, and Zn, are concentrated in the black-shale beds relative to the green and red claystone beds (see discussion in a later section and Dean, Arthur, and Stow, this volume). Three other elements, Ba, Fe, and Mn, probably are concentrated in Unit 8 because of unusual diagenetic redox conditions within a sequence of interbedded reduced and oxidized sediments.

Lithologic Unit 7 consists of 109 m of red claystone with interbeds of green, red, and purple siltstone and claystone in numerous repeated turbidite sequences (Stow and Dean, and Stow and Miller, this volume). The red claystone of Unit 7 is similar to red claystone that is the dominant lithology of Unit 8 but contains more carbonate, more turbidite sand, and no black shale beds. Concentrations of most elements in Unit 7 are relative low because of dilution by carbonate and coarse-clastic material and lack of black shale. This is emphasized for many elements in Figure 2 because Unit 7 is between two lithologic units with high concentrations of many elements (for example, see plots for Cr and Cu in Fig. 2).

Lithologic Unit 6 consists of a 41-m sequence of thick, carbonate-cemented, volcanogenic, sandstone turbidites. These coarse turbidites are upper-fan channel sandstones that are the culmination of a coarseningupward deep-sea fan sequence which began with finegrained, distal mud turbidites of Unit 8 (Stow and Dean, this volume). The volcanic rock fragments in these turbidites contain particularly high concentrations of Al, Fe, Mg, Na, Ti, P, Co, Cu, Cr, Zr, and Sc (Fig. 2). Summary statistics for 9 samples of sandstone from Unit 6 are given in Table 5.

Lithologic Units 4 and 5 are highly heterogeneous and consist of interbedded mudstone, marlstone, sandstone, and clastic limestone, mostly deposited by turbidity currents in fan lobes and channels (see Stow, this volume). The highly variable lithologies of these units are indicated by the extreme variation in concentrations of major elements and many trace elements (Fig. 2).

The Cretaceous/Tertiary boundary occurs near the base of Unit 4 in Core 50, Section 2 at about 592.5 m. The paleontologic boundary was chosen at 592.2 m subbottom and the paleomagnetic boundary was chosen at about 592.6 m (Site 530, this volume). Most of the Upper Cretaceous-lower Tertiary section at Site 530 consists of interbedded red and green claystones and marlstones with occasional limestone beds. One limestone at 592.28 to 592.38 m contains high concentrations of many elements on a carbonate-free basis (Dean et al., this volume). Some elements (e.g., Mg, Mn, Sr, and B) probably are derived mostly from carbonate minerals. but other elements (e.g., V, Zr, Zn, Sc, Co, Pb, Er, Nd, Sm, and Y) probably are not carbonate-related. There is a slight iridium anomaly between about 592.4 and 592.5 m in red claystone just below the limestone bed (Dean et al., this volume).

Lithologic Unit 3 consists of 190 m of red and green muds that differ little in composition, in marked contrast to the inhomogeneous lithologies of underlying Units 4 and 5. Most of the unit contains no carbonate minerals. The compositional homogeneity and lack of diluting carbonate minerals is indicated in Figure 2 by the small amount of variation in concentrations of most major and trace elements. Concentrations of some elements, however, particularly Fe, K, B, Cr, Li, Sc, Zr, Y, and La, are relatively high and variable within Unit 3, and this undoubtedly reflects variations in amount and/ or composition of clay.

Units 1 and 2 consist of debris-flow deposits interbedded with background pelagic sediment that contains varying mixtures of siliceous biogenic debris, calcareous biogenic debris, and nonbiogenic material (mostly clay; Fig. 3). Geochemical differences between Unit 2 and Unit 1, and within Unit 1, result primarily from variations in relative proportions of these three sediment components (Fig. 3); Subunit 1a and Unit 2 contain more-or-less equal mixtures of all three components, whereas Subunit 1b contains abundant siliceous biogenic debris (mostly diatoms). Element associations for each of the three sediment components are discussed below for the same components at Site 532.

Site 532

The three lithologic Subunits, 1a, 1b, and 1c, recovered at Site 532 on Walvis Ridge are approximately equivalent to lithologic Units 1a, 1b, and 2, respectively, from Site 530, and, like the Site 530 units, differ mainly in the relative proportions of the same three sediment components, namely siliceous biogenic debris, calcareous biogenic debris, and nonbiogenic material (Fig. 4). The most noticeable characteristic of the entire sediment section recovered at Site 532 is cyclic dark and light color variations (Site 532 and Gardner et al., both this volume). The organic geochemistry of these cycles is discussed by Meyers, Brassell, and Huc (this volume). Inorganic geochemical similarities and differences between light and dark parts of these cycles are discussed in a later section.

The peaks in amount of siliceous biogenic debris at both sites occur in the upper Pliocene to lower Pleistocene parts of the section and apparently correspond to the most intense period of upwelling associated with the development of the Benguela Current system (Gardner et al., this volume). The fact that concentrations of SiO_2 at both Site 530 and 532 show maxima that correspond to maxima in the curves for siliceous biogenic debris obtained independently from smear-slide estimates suggests that much of the SiO₂ is biogenic. For both sites we fractionated total SiO2 into biogenic SiO2 and nonbiogenic SiO₂ by using the SiO₂: Al₂O₃ ratio. The plot of SiO₂: Al₂O₃ in Figure 4 shows that there is a baseline low value of about 3.3 in those parts of the section at 532 that do not contain any detectable biogenic SiO₂ in smear slides. We therefore assumed that a value of 3.3 was indicative of nonbiogenic aluminosilicate minerals that were deposited at both sites. Nonbiogenic SiO₂ was then calculated according to the equation:

Nonbiogenic SiO₂ = (% Al₂O₃) × 3.3.

Biogenic SiO was calculated according to the equation:

Biogenic $SiO_2 = (total SiO_2) - (nonbiogenic SiO_2)$.

Downhole plots of biogenic and nonbiogenic SiO_2 calculated for Hole 530B and Holes 532 and 532B are shown in Figures 5 and 6 respectively. The calculated curves for biogenic SiO_2 show the same trends as the curves for siliceous biogenic debris from smear-slide estimates. However, we feel that the values calculated from SiO_2 and Al_2O_3 analyses are more realistic measures, particularly of weight percent biogenic silica, because smear-slide data are volume estimates that are semiquantitative at best and usually tend to overestimate percentages of siliceous biogenic fragments which are large and porous.

We ran a Q-mode factor analysis of the element-concentration data for Site 532, including biogenic and nonbiogenic SiO₂, in order to see if there were groups of samples based on geochemistry that corresponded with variations in the relative proportions of the three main sediment components. The computer program used for the analysis was a modified version of the CABFAC program described by Klovan ad Miesch (1976). The results of this analysis showed that most elements were associated with the nonbiogenic fraction. This association was particularly evident for Fe, K, Ti, Cr, Cu, V, Zn, Li, Ni, Na, B, Sc, and Y in order of decreasing degee of association with the nonbiogenic fraction. The association of elements with the clastic fraction is illustrated in Figure 4 by the maxima for concentrations of many elements between about 100 and 140 m, which corresponds

Table 2. Chemica	l analyses of	samples	from	Leg	75,	Hole 530A	١.
------------------	---------------	---------	------	-----	-----	-----------	----

Sample	Core	Section	Interval	DEPTH m	X 5102	X A1203	Z Fe203	7 MgO	Σ CaO	X Na2O	Z K20	Z T102	Z P205	Z MnO	ppm As	ppa B	ррш Ва	ppm Be	ppm Cd	ppm Co
10011095 10023029 10045095 10046003 10046004	1 2 4 4	1 3 5 6 6	95 29 95 3 3	125.95 137.79 160.45 161.03 161.03	30.0 35.9 28.3 47.9 47.3	6.4 7.9 8.2 13.4 13.3	3.55 3.99 3.68 5.80 5.76	1.65 1.89 1.99 3.01 2.97	26.80 21.50 27.90 8.84 9.12	1.74 2.09 1.38 2.05 2.04	.96 1.47 1.15 2.92 2.93	.29 .38 .34 .65 .65	.10 .11 .11 .15 .15	<.02 <.02 .03 .02 .02	<20 <20 <20 <20 <20 <20	160 80 180 290 140	650 600 610 830 710	(3 (3 (3 (3 3	<5 <5 36 21 <5	8 9 10 19 11
10055023 10062090 10062132 10072002 10074116	5 6 7 7	5 2 2 2 4	23 90 132 2 116	169.23 174.90 175.32 183.52 187.66	50.2 35.3 53.9 63.7 18.2	11.8 10.0 13.6 13.4 5.5	7.78 4.40 5.91 5.41 2.32	2.37 2.49 2.61 1.64 1.46	6.32 20.90 3.86 2.35 36.70	2.00 1.49 2.25 3.07 .88	2.39 1.89 2.74 2.48 .52	.59 .43 .71 .70 .22	.20 .08 .19 .19 .11	.03 <.02 <.02 .02 <.02	<20 <20 50 <20 60	150 120 150 250 70	630 490 630 890 320	(3 (3 (3 (3 3	11 <5 9 13 <5	11 11 27 12 14
10074117 10074145 10084038 10085028 10091105	7 7 8 8 9	4 4 5 1	116 145 38 28 105	187.66 187.95 196.38 197.78 202.05	18.2 12.5 29.7 52.3 43.2	5.5 3.7 8.4 12.9 11.2	2.30 2.14 4.28 6.65 5.05	1.42 1.09 2.20 3.01 2.60	36.90 42.10 25.90 4.24 14.10	.92 .83 1.50 2.13 1.93	.59 .40 1.23 2.65 2.19	.23 .14 .37 .64 .50	.10 .11 .10 .14 .16	<.02 <.02 .03 .03 .03	<20 <20 <20 <20 <20	120 100 110 140 130	330 270 420 540 480	<3 <3 <3 <3 <3	<5 <5 10 5 11	7 6 20 6 9
10103015 10106007 10112080 10112121 10124035	10 10 11 11 12	3 6 2 2 4	15 7 80 121 35	213.65 218.07 222.30 222.71 234.35	25.3 54.1 14.4 58.2 33.4	7.2 14.7 4.3 14.4 9.6	3.09 7.37 2.00 5.76 4.20	1.79 3.21 1.12 2.43 2.31	31.10 2.28 40.40 3.29 23.00	1.20 2.19 .94 2.40 1.54	.82 3.02 .49 2.93 1.62	-28 -75 -15 -78 -42	.10 .18 .12 .17 .11	.03 .03 .04 .02 .03	<20 <20 <20 <20 20	60 310 60 80 110	360 630 340 410 450	<3 <3 <3 <3 <3	<5 18 <5 <5 <5	7 13 <5 8 11
10125005 10125006 10131079 10131093 10131102	12 12 13 13 13	5 5 1 1 1	5 5 79 93 102	235.55 235.55 239.79 239.93 240.02	55.0 54.6 25.6 47.2 55.5	15.4 15.3 7.1 12.7 11.9	7.14 7.01 3.03 5.54 8.15	3.34 3.35 1.87 2.71 1.69	1.87 1.85 30.70 11.20 6.16	2.23 2.15 1.18 2.05 2.56	3.30 3.27 .88 2.60 2.15	.79 .77 .32 .66 .79	.19 .18 .10 .17 .18	.03 .03 .03 .03 .03	<20 30 <20 <20 <20	160 160 80 100 250	430 420 410 390 420	<3 <3 <3 <3 <3	<5 <5 <5 <5 8	12 12 <5 14 12
10143066 10155087 10155096 10182055 10185047	14 15 15 18 18	3 5 2 5	66 82 96 55 47	252.16 264.82 264.96 288.55 292.97	15.9 54.4 21.8 55.6 55.6	4.6 15.0 6.4 16.4 16.3	2.04 6.89 3.13 8.03 8.28	1.32 3.18 1.60 3.44 3.00	39.50 3.76 33.90 1.38 1.69	.84 2.03 .96 2.10 1.74	.43 3.39 .98 3.62 3.80	.17 .72 .27 .80 .78	.07 .12 .12 .15 .10	.03 .03 .12 .07	<20 <20 20 <20 <20	50 160 50 180 290	380 650 440 570 480	<3 <3 <3 <3 <3	<5 <5 9 <5 <5	5 23 <5 26 21
10193100 10203063 10213120 10215129 10221130	19 20 21 21 22	3 3 5 1	100 63 120 129 130	300.00 309.13 319.20 322.29 325.80	55.8 54.2 55.3 55.4 56.9	16.7 16.8 16.5 16.6 16.2	8.04 9.11 8.82 8.37 7.95	3.16 3.40 3.39 3.25 3.31	1.01 .51 .57 .76 .66	1.84 2.02 1.90 1.96 1.90	3.75 3.76 3.88 3.81 3.73	.80 .82 .81 .79 .75	.10 .13 .13 .14 .11	.05 .06 .09 .21 .06	<20 <20 <20 <20 <20 <20	200 180 200 170 160	470 400 410 390 360	<3 <3 <3 <3 <3 <3	14 9 17 <5 7	29 23 31 23 18
10225130 10241111 10241143 10246077 10254085	22 24 24 24 25	5 1 1 6 4	130 111 143 77 85	331.80 344.61 344.93 351.77 358.35	55.3 53.9 6.1 58.8 57.6	16.2 15.8 2.0 15.5 14.9	9.62 8.81 1.00 7.82 8.72	3.27 3.34 .79 3.31 3.35	.45 1.57 48.70 .70 .65	1.79 2.04 .42 2.24 2.21	3.91 3.13 .12 3.02 2.95	.76 .82 .06 .81 .77	-13 -18 -08 -14 -13	.07 .16 .79 .06 .06	<20 30 <20 <20 <20	160 140 40 120 320	420 290 40 450 420	3 (3 (3 (3	<5 <5 <5 21	19 33 <5 20 26
10262138 10262139 10273098 10283030 10285029 10291040 10305051 10312081 10323005 10332008	26 26 27 28 28 29 30 31 32 33	2233515232	138 138 98 30 29 40 51 81 5 8	365.38 365.38 375.98 384.80 387.79 391.40 407.01 412.31 422.55 430.58	58.6 58.1 56.0 60.4 57.5 65.2 60.6 57.0 59.6	15.1 15.1 15.3 15.7 15.3 16.1 13.8 14.6 15.5 14.7	8.04 8.03 7.89 9.41 6.90 7.18 5.59 7.54 8.84 7.38	3.25 3.28 3.19 2.96 2.84 3.20 2.11 2.84 3.13 2.88	.54 .55 1.07 .52 .71 .57 1.46 .69 .58 1.62	2.19 2.15 2.03 1.84 2.16 1.97 2.69 2.22 1.99 2.12	3.14 3.17 3.32 3.38 3.28 3.39 2.67 3.08 3.47 3.31	.75 .75 .78 .78 .89 .85 .88 .88 .86 .80 .81	.12 .11 .16 .12 .13 .11 .16 .12 .14 .14	.04 .05 .07 .39 .04 .03 .04 .04 .04	<20 <20 <20 <20 <20 <20 <20 <20 <20 <20	120 100 340 130 100 240 240 90 260 260	450 430 690 390 410 420 550 470 870 470	(3) 4 (3) (3) (3) 5 (3)	<5 6 25 <5 9 <5 17 <5 <5 6	14 10 26 15 23 31 35 16 45 18
10342055 10346062 10346081 10353075 10355039	34 34 35 35	2 6 3 5	55 62 81 75 39	440.55 446.62 446.81 451.75 454.39	65.5 56.9 59.8 56.3 57.7	13.3 16.0 15.3 16.0 14.8	4.95 9.42 8.08 9.61 8.64	1.86 2.86 2.60 2.83 3.19	1.44 .79 .79 .84 1.01	2.81 1.97 2.15 1.90 1.97	2.85 3.75 3.60 3.71 3.43	1.07 .86 .88 .87 .84	.18 .13 .14 .22 .15	.04 .06 .10 .09 .05	<20 <20 <20 <20 <20 50	100 150 110 120 130	410 520 320 460 540	<3 <3 <3 <3 <3 3	<5 <5 <5 <5 <5	26 16 30 17 14
10361075 10371055 10371066 10371067 10380139	36 37 37 37 38	1 1 1 1	75 55 66 66 39	458.25 467.55 467.66 467.66 476.89	58.7 55.7 17.0 16.8 54.4	14.5 15.4 4.9 4.8 13.4	7.31 8.96 2.04 2.02 7.95	3.21 3.26 1.36 1.32 4.92	1.84 1.08 39.20 39.70 1.57	1.93 2.05 .65 .63 2.10	3.37 3.73 .77 .86 3.14	.87 .84 .24 .23 .80	.15 .18 .08 .08 .33	.03 .05 .41 .42 .07	<20 <20 <20 <20 <20 <20	140 130 70 100 270	520 710 250 260 540	<3 <3 <3 <3 <3 <3 <3	7 <5 <5 10 6	16 25 25 7 22
10381075 10391018 10398000 10401012 10401013	38 39 39 40 40	1 1 8 1 1	75 18 0 12 12	477.25 486.18 488.90 495.62 495.62	16.9 48.5 31.9 57.1 57.4	4.0 10.4 3.2 12.0 12.2	2.25 5.67 1.83 7.58 7.60	2.27 4.42 1.64 4.68 4.83	39.00 9.50 32.00 1.35 1.18	.52 1.73 .63 1.83 1.86	.51 2.44 .55 3.00 3.01	.20 .74 .18 .83 .83	.15 .16 .11 .29 .29	.10 .04 .03 .05	<20 <20 <20 70 <20	70 100 50 120 120	1,000 1,400 1,200 840 840	<3 <3 <3 3 3	<5 10 <5 12 <5	6 18 6 31 17
10482056 10404011 10404083 10404089 10404093	40 40 40 40	4 4 4 4	11 83 89 93 98	497.55 500.11 500.83 500.89 500.93	15.7 26.0 27.9 19.0 6.6	3.9 6.7 7.0 4.8 2.0	2.01 3.48 3.79 2.44 .63	1.61 2.64 2.58 1.90 .90	40.90 30.40 28.40 37.60 49.20	.63 .98 1.06 .71 .26	.47 1.20 1.46 .87 .23	.19 .33 .38 .25 .08	.07 .10 .09 .09 .06	<.02 <.02 .02 <.02 <.02 <.02	<20 <20 <20 <20 <20 50	30 60 50 70 90	130 270 620 550 280	(3 (3 (3 (3 (3)))	5 (5 (5 (5	<5 10 9 8 6
10404098 10411021 10421096 10421115 10421129	41 42 42 42 43	1 1 1 2	21 96 115 129 131	500.98 505.21 515.46 515.65 515.79	29.4 63.8 38.3 4.5 24.2	7.1 7.0 9.3 1.2 5.3	3.87 4.03 5.07 .36 2.82	3.01 2.09 2.77 .80 1.78	26.40 8.31 19.90 52.40 34.20	.95 1.15 1.43 .15 .74	1.33 1.61 2.10 .15 .86	.39 .43 .53 .02 .28	.10 <.05 .15 <.05 .06	.03 .03 .06 .07 <.02	20 <20 <20 <20 <20 <20	50 80 220 20 110	120 220 590 100 340	0 0 0 0 0 0 0	10 <5 33 <5 <5	<5 21 23 <5 <5
10432131 10432133 10432138 10441061 10441132	43 44 44 45	2 2 1 1 1	133 138 61 132 9	526.81 526.83 526.88 534.11 534.82	38.4 1.7 83.8 56.8 60.0	7.3 .4 5.4 14.2 12.4	4.14 .15 2.29 8.10 6.93	2.39 .63 1.17 4.31 3.88	22.40 54.80 .55 .85 2.12	1.20 <.15 1.03 1.82 1.72	1.71 .02 1.31 3.52 3.03	.49 <.02 .34 .78 .71	.07 <.05 .06 .13 .11	.02 .10 <.02 .02 <.02	<20 <20 20 <20 <20 <20	200 <20 130 150 140	550 53 330 550 1,000	0 3 3 3 3 3	22 <5 490 7 <5	15 <5 12 15 20
10451009 10471083 10472039 10482010 10482055	47 47 48 48 40	1 2 2 2 2	83 39 10 55 55	543.09 562.83 563.89 573.10 573.55	55.4 3.9 48.7 3.2 3.3	12.2 1.2 11.1 1.2 1.1	8.49 .41 7.75 .32 .34	4.43 .73 4.39 .90 .89	2.63 52.60 8.02 52.30 52.40	2.06 .18 1.76 .23 <.15	3.05 .12 2.61 .10 .10	.77 .10 .86 .04 .04	.38 .07 .24 .10 .09	.04 .04 .03 .18 .18	<20 <20 <20 <20 <20 <20	330 30 280 <20 30	420 83 360 63 66	0 0 0 0 0 0	22 <5 20 <5 <5	33 <5 70 <5 <5
10491051 10492015 10498000 10501128 10503060	49 49 49 50 50	1 2 8 1 3	51 15 0 128 60	581.51 582.65 583.17 591.78 594.10	44.8 54.6 1.5 55.4 24.0	11.3 13.1 .6 12.7 5.8	5.95 7.80 .13 8.16 4.12	3.73 4.17 .72 3.90 2.19	12.10 3.51 54.70 3.05 32.20	1.40 1.79 <.15 1.84 .74	2.55 3.08 .08 3.53 1.25	.77 .89 <.02 1.03 .39	.27 .17 .16 .31 .08	.04 .05 .26 .06 .19	<20 <20 <20 <20 <20 <20	120 100 <20 80 60	210 200 13 250 390	0 0 0 0 0 0 0 0	15 <5 9 <5 <5	42 18 <5 13 10

to a maximum of nonbiogenic material. As expected, the only element associated with the calcareous biogenic component was strontium. Only two elements, Mo and Ba, were associated with the siliceous biogenic component. This latter association is indicated by the fact that concentrations of both Mo and Ba about double in the part of the section rich in siliceous biogenic debris (Fig. 4). This increase in Ba and particularly Mo also is evident in the siliceous part of the section in Hole 530B (Fig. 3). Brongersma-Sanders et al. (1980) reported an association of barium in diatom-rich shelf sediments off Southwest Africa just to the east of Site 532.

Table 2. (C	Continued)
-------------	------------

ppm Cr	ppm Cu	ppm Ca	ppm Li	ppm Mo	ppm Ni	ppm Pb	ppm Sc	ppm Sr	ppm Th	ppm U	ppm V	ppm Zn	ppm Zr	ppm Y	ppn La	ppm Ce	ppu Nd	ppm Dy	ppm Yb	Z CaCO3
67 94 110 180 160	42 39 48 49 49	60 <20 50 70 <20	49 36 74 94 72	15 7 (5 (5 (5	38 42 61 74 67	<20 <20 <20 <20 <20 <20	11 12 8 26 25	920 620 1,200 430 380	10 <10 40 20 60	<100 <100 100 200 <100	59 64 90 160 130	59 74 93 110 110	<10 30 90 170 120	16 17 21 35 30	23 8 14 31 26	40 40 80 100 70	<50 <50 <50 <50 100	<5 <5 35 16 22	2 <2 5 6 2	47.9 38.4 49.8 15.8 16.3
170 100 240 220 97	40 44 58 76 49	30 <20 110 120 100	75 49 77 82 48	7 <5 <5 15 17	84 50 63 91 41	<20 <20 70 20 120	18 16 32 16 21	310 780 220 920 1,300	30 20 100 40 110	<100 <100 700 200 600	120 120 140 120 64	110 86 100 120 74	160 20 150 120 30	27 21 38 32 24	30 25 47 30 55	60 60 200 70 150	70 <50 190 80 60	8 6 75 28 44	2 <2 7 4 <2	11.3 37.3 6.9 4.2 65.5
75 42 130 120 140	32 20 65 48 47	60 30 60 <20 50	43 22 59 93 80	<5 (5 (5 (5 (5	27 31 68 38 49	<20 <20 30 <20 <20	7 8 16 16 21	1,400 1,100 1,000 230 610	10 20 20 20 <10	<100 <100 200 <100 <100	59 32 120 130 110	41 22 120 61 110	<10 <10 100 90 130	15 11 19 14 26	23 20 27 23 33	<30 <30 70 <30 60	<50 60 <50 <50	<5 <5 17 13 8	2 <2 <2 2 3	65.9 75.2 46.2 7.6 25.2
63 210 30 130 110	31 53 25 21 55	<20 40 <20 <20 20	34 110 30 57 57	(5) (5) (5) (5)	27 90 18 43 34	<20 20 <20 <20 <20 <20	8 25 <5 14 18	970 190 1,300 190 930	<10 10 20 <10 10	<100 <100 <100 <100 <100 <100	54 160 49 100 120	67 110 29 61 100	10 200 40 160 10	15 37 9 22 25	6 40 <5 17 31	<30 70 <30 <30 50	<50 <50 <50 <50 <50	<5 19 14 <5 6	<2 5 <2 3 <2	55.5 4.1 72.1 5.9 41.1
160 170 63 150 150	40 36 35 34 24	<20 <20 <20 <20 60	82 86 46 54 48	<5 <5 <5 10	39 39 16 53 140	<20 <20 <20 <20 <20 <20	23 19 5 17 13	150 150 1,100 410 310	10 10 <10 <10 10	<100 <100 <100 <100 <100	120 140 83 100 81	94 86 51 92 65	130 140 70 90 140	22 23 12 23 33	30 25 <5 19 32	60 40 <30 50 100	<50 60 60 <50 <50	8 12 19 <5 13	3 4 2 3 6	3.3 3.3 54.8 20.0 11.0
40 150 58 160 110	40 63 30 91 55	<20 30 <20 30 50	27 74 36 90 67	(5) (5) (5) (5) (5)	13 81 9 99 64	<20 20 <20 20 20 <20	<5 26 5 31 19	1,400 220 1,000 140 150	<10 20 10 20 <10	<100 <100 <100 <100 <100	71 170 65 150 140	30 150 47 140 110	40 70 50 80 170	11 30 15 36 24	6 34 <5 39 36	<30 90 <30 90 80	<50 <50 60 <50 <50	<5 7 15 11 13	<2 2 <2 3 3	70.5 6.7 60.5 2.5 3.0
160 120 150 110 120	77 56 91 58 59	50 20 50 30 <20	110 95 110 81 79	5 5 5 5 5 5 5 5	71 61 94 72 54	(20 (20 (20 (20 (20 (20	26 27 29 26 19	130 90 110 95 100	<10 <10 <10 20 10	<100 <100 <100 100 <100	160 110 150 120 130	130 110 140 140 140	220 120 200 120 130	34 25 37 26 21	34 30 40 37 28	110 70 100 110 40	<50 60 60 <50 <50	<5 13 12 15 16	5 3 6 4 3	1.8 .9 1.0 1.4 1.2
160 160 20 130 160	67 120 9 33 41	<20 30 <20 <20 60	73 77 10 44 54	(5 (5 (5 (5) (5)	66 94 14 66 77	20 60 70 <20 <20	27 34 <5 23 28	97 130 1,000 110 120	50 60 <10 10 10	<100 300 <100 <100 100	140 120 24 170 130	130 140 27 120 130	120 140 <10 100 160	27 41 10 28 37	30 44 15 27 41	80 120 <30 80 110	110 <50 <50 <50 <50	48 40 <5 13 22	6 4 <2 3 3	.8 2.8 87.0 1.2 1.2
160 140 210 99 160 130 170 140 330 160	41 39 67 55 47 43 58 44 87 35	<20 <20 100 <20 <20 40 60 <20 20 20 40	42 44 62 60 53 44 37 100 58	888888888888888888888888888888888888888	46 39 75 48 74 67 76 57 120 54	<pre></pre>	24 20 30 18 22 18 17 18 55 25	100 100 110 110 110 210 120 250 160	<10 <10 40 10 20 20 10 <10 30 20	<100 <100 <100 <100 <100 <100 <100 <100	120 110 190 130 150 150 150 110 270 130	100 90 150 95 150 160 130 140 270 86	110 120 180 110 160 130 340 170 290 30	25 24 42 17 29 22 41 29 65 25	26 22 47 28 25 28 38 21 74 29	70 50 130 60 80 <30 180 70	<50 <50 60 70 <50 50 50 110 70	11 10 16 12 15 34 7 <5 27 16	3 2 5 2 4 2 7 2 8 5	1.0 1.9 .9 1.3 1.0 2.6 1.2 1.0 2.9
110 120 140 140 170	32 42 48 44 99	<20 <20 <20 <20 <20 <20	36 68 51 56 59	(5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	82 44 110 50 51	<20 <20 <20 <20 <20 <20	12 23 20 23 25	180 130 120 120 140	<10 <10 <10 <10 <10	<100 <100 <100 <100 <100	120 120 100 94 150	110 120 110 120 130	290 140 130 110 160	24 19 26 33 26	27 28 27 33 23	40 50 60 90 70	<50 <50 <50 <50 <50	21 <5 7 <5 17	4 2 3 2 3	2.6 1.4 1.4 1.5 1.8
170 140 74 49 160	34 54 28 22 65	60 40 130 80 40	73 74 35 32 77	<5 <5 12 <5 <5	53 82 32 33 80	<20 20 30 <20 <20	26 28 20 17 26	200 160 730 810 170	<10 20 40 30 20	<100 <100 1,000 100 <100	140 120 39 46 130	110 150 62 54 130	280 80 20 60 20	40 33 30 18 35	41 36 19 <5 38	100 90 190 90 70	<50 <50 <50 <50 <50	24 11 <5 32 20	5 3 <2 <2 <2 4	3.3 1.9 70.0 70.9 2.8
40 110 52 190 180	22 46 31 86 8	40 <20 <20 70 40	14 52 18 72 28	<5 (5 9 (5	20 55 14 85 52	<20 <20 <20 80 <20	7 12 8 31 24	430 300 550 260 240	10 10 <10 150 <10	<100 <100 <100 400 200	39 110 34 140 67	45 100 47 130 110	30 110 <10 120 90	17 17 15 44 42	8 13 17 50 38	40 <30 <30 120 140	<50 <50 <50 330 <50	<5 6 <5 150 <5	2 2 <2 12 <2	69.6 17.0 57.1 2.4 2.1
28 52 64 51 31	14 25 31 26 28	20 <20 30 20 <20	22 31 37 22 19	(5) (5) (5) (5) (5) (5)	16 33 36 44 7	<20 <20 20 <20 160	<5 9 8 7 15	700 630 580 750 570	<10 <10 30 20 100	900 <100 <100 <100 300	18 44 53 41 18	25 68 74 64 45	30 20 60 <10 <10	8 13 13 15 10	<5 <5 7 21 49	<30 30 30 40 <30	<50 <50 60 <50 <50	<5 <5 24 <5 38	<2 <2 <2 <2 <2 4	73.0 54.3 50.7 67.1 87.9
59 78 120 16 32	34 45 58 13 12	<20 20 60 <20 30	31 35 70 5 25	5 5 5 5 5 5 5	32 73 63 12 13	<20 <20 40 <20 <20 <20	<5 13 13 <5 9	510 350 680 280 910	20 10 50 <10 20	<100 <100 200 <100 <100	50 75 100 18 42	52 84 120 28 50	60 90 110 <10 40	7 10 28 8 7	<5 14 30 22 10	<30 30 110 <30 <30	70 <50 <50 <50 <50	25 <5 28 <5 <5	<2 <2 2 <2 <2 <2	47.1 14.8 35.5 93.6 61.1
130 7 78 150 190	81 35 29 80 52	120 <20 40 <20 40	49 <5 29 83 71	<5 <5 <5 <5	54 15 57 57 70	30 <20 20 <20 <20	14 <5 6 22 26	820 230 100 200 230	40 <10 20 10 20	200 <100 100 <100 100	100 10 58 140 130	82 24 51 110 110	90 <10 110 110 40	20 <5 16 21 23	17 <5 22 25 29	60 <30 60 40 80	90 <50 <50 <50 <50	13 <5 17 17 <5	<2 <2 <2 <2 <2 <2 <2 <2	40.0 97.9 1.0 1.5 3.8
170 20 220 20 21	59 <5 100 7 <5	80 40 60 <20 40	92 <5 97 5 <5	<5 <5 <5 <5	120 <5 150 <5 10	<20 <20 <20 <20 <20 <20	23 <5 29 <5 <5	420 290 280 340 360	30 10 20 <10 20	200 100 200 <100 <100	160 7 180 15 15	160 19 140 19 12	160 <10 150 <10 <10	47 9 37 9	43 18 33 <5 21	60 <30 60 <30 <30	<50 <50 <50 <50 <50	14 6 23 <5 9	5 <2 <2 <2 <2 <2	4.7 93.9 14.3 93.4 93.6
150 140 18 190 55	91 42 180 58 47	<20 <20 130 <20 <20	70 42 <5 51 33	(5 (5 (5 (5 (5	120 56 7 66 37	<20 20 <20 <20 <20 <20	18 20 <5 17 10	310 190 320 200 430	10 <10 <10 <10 <10	<100 <100 <100 <100 <100	150 140 33 140 47	76 120 <5 140 62	120 80 10 150 40	33 24 27 27 12	26 20 18 15 10	40 40 90 <30 <30	<50 <50 <50 <50 <50	12 6 <5 <5 12	3 3 4 <2 2	21.6 6.3 97.7 5.4 57.5

DISCUSSION

Mid-Cretaceous Black Shales, Site 530

The element plots for Hole 530A (Fig. 2) show that concentrations of some elements are obviously elevated in samples from lithologic Unit 8, the red, green, and black claystone and shale of Albian to Coniacian age. These plots do not, however, differentiate between different colored lithologies and do not compensate for the diluting effect of $CaCO_3$. Summary statistics on a carbonate-free basis for 12 samples of red claystone, 27 samples of green claystone, and 28 samples of black

Table 2. (Continued).

Sample	Core	Section	Interval	DEPTH m	% S102	% Al203	% Fe203	Z MgO	Z CaO	2 Na20	X K20	% T102	X P205	% MnO	ppm As	ppm B	рри Ва	ppm Be	ppm Cd	ppm Co
10503070 10504044 10512111 10515058 10515059	50 50 51 51 51	3 4 2 5 5	70 44 111 58 58	594.20 595.44 602.61 606.58 606.58	20.9 46.4 56.6 46.5 46.9	5.1 11.0 12.9 3.5 3.5	3.55 6.67 7.97 1.83 1.83	1.93 3.20 3.92 1.19 1.22	35.40 11.60 2.70 24.20 24.00	.62 1.82 2.12 .72 .68	1.15 2.99 3.46 .84 .84	.34 .89 .91 .23 .24	.08 .19 .25 .12 .12	.16 .12 .09 .06 .06	<20 <20 <20 <20 <20 <20	30 70 300 50 70	92 250 460 460 500	(3 (3 (3 (3) (3)	<5 7 22 <5 <5	8 19 41 <5 7
10521069 10531040 10531130 10541030 10541057	52 53 53 54 54	1 1 1 1	64 40 130 30 57	610.14 619.40 620.30 628.80 629.07	58.7 56.4 20.0 1.9 61.0	12.1 10.2 4.0 .6 8.6	7.62 6.99 2.67 .15 5.59	3.74 3.50 1.64 .70 3.19	2.62 6.27 38.10 54.20 5.79	1.81 1.75 .79 <.15 1.78	3.10 2.62 .78 .03 2.20	.75 .85 .48 <.02 .92	•16 •23 •24 •07 •27	.03 .06 .07 .09 .03	<20 <20 <20 <20 <50	130 90 40 <20 80	550 600 180 47 320	<3 <3 <3 <3	12 <5 <5 <5 9	27 25 9 <5 38
10553036 10555066 10555067 10561092 10561123	55 55 56 56	3 5 1 1	36 66 66 92 123	641.36 644.66 644.66 648.42 648.73	4.1 40.6 40.4 26.7 39.4	1.3 5.7 5.7 3.5 6.8	.64 3.34 3.32 1.99 4.36	.67 2.01 1.99 1.38 2.37	52.30 23.90 24.10 35.70 22.50	.30 .93 .94 .67 1.23	.16 1.53 1.54 .77 1.75	.22 .41 .41 .24 .65	.11 .18 .18 .09 .20	.05 .03 .03 .04 <.02	<20 <20 <20 <20 <20 <20	30 120 50 140 60	63 230 180 180 250	<3 <3 <3 7 <3	7 <5 <5 <5	<5 10 9 130 14
10562090 10571117 10581031 10591118 10601121	56 57 58 59 60	2 1 1 1 1	90 117 31 118 121	649.90 658.17 666.81 677.18 686.71	37.9 19.9 60.5 52.4 49.0	3.6 4.0 13.3 8.0 7.9	2.24 2.19 6.94 3.27 4.67	1.36 1.30 3.55 1.75 2.65	29.20 39.20 1.91 15.40 15.30	.50 .71 2.33 1.64 1.40	.89 .79 3.42 2.07 1.97	.25 .47 1.05 .62 .86	.08 .12 .36 .28 .17	.04 .13 .03 .04 .06	<20 <20 <20 <20 <20	60 40 100 70 70	130 280 390 390 340	<3 <3 <3 <3 <3	14 12 <5 <5 9	11 <5 14 <5 12
10611087 10612130 10615012 10622079 10633076	61 61 62 63	1 2 5 2 3	87 130 12 79 76	695.87 697.80 701.12 706.79 717.76	55.2 35.3 44.8 44.4 40.2	11.7 8.3 10.8 8.1 5.2	7.70 5.25 3.31 3.94 3.86	3.71 2.84 1.79 1.79 1.88	5.28 22.20 17.60 15.50 24.30	2.07 1.27 2.31 2.08 .92	3.00 1.84 2.15 1.70 1.25	1.40 .73 1.91 .37 .53	.27 .14 .22 .10 .11	.05 .11 .16 <.02 .15	<20 <20 <20 <20 <20 <20	230 140 40 60 30	580 800 610 380 240	<3 (3 (3 (3 (3) (3)	7 <5 <5 <5 <5	31 17 11 21 11
10633079 10633121 10633122 10638007 10641125	63 63 63 64	3 3 8 1	79 121 121 7 125	717.79 718.21 718.21 718.57 724.75	42.4 16.1 15.9 29.0 48.6	7.4 4.7 4.6 7.1 8.9	5.56 3.74 3.73 6.06 6.46	2.69 2.63 2.70 4.41 2.76	18.90 39.30 39.30 26.70 13.40	1.24 1.10 1.13 1.72 1.51	1.93 .45 .41 .83 2.20	.80 1.28 1.28 1.58 .98	.19 .22 .21 .32 .21	.10 .22 .22 .14 .09	<20 <20 <20 <20 <20 <20	160 20 <20 40 70	410 120 80 160 290	(3) (3) (3) (3) (3)	6 12 <5 <5 20	21 13 10 17 18
10642068 10643013 10671098 10671106 10683035	64 64 67 68	2 3 1 3	68 13 98 106 35	725.68 726.63 752.98 753.06 764.85	34.6 59.7 34.3 40.7 42.1	9.5 10.8 10.5 5.6 9.6	8.59 7.92 8.27 4.23 4.64	5.09 3.37 2.35 1.83 1.43	20.70 3.56 20.40 23.40 19.80	2.30 1.73 2.43 .97 2.19	.96 2.67 1.34 1.38 1.84	3.21 1.03 2.92 .58 1.96	.46 .19 .49 .16 .25	.18 .06 .18 .13 .20	50 <20 <20 <20 <20 <20	<20 190 <20 60 30	220 410 480 420 690	<pre><3 <3 <3 <3 <3</pre>	<5 <5 8 11 <5	31 25 18 20 14
10686062 10691092 10691093 10693076 10703134	68 69 69 69 70	6 1 3 3	62 92 92 78 134	769.62 771.92 771.92 774.78 784.84	57.0 42.9 45.3 50.3 57.1	8.5 9.1 8.1 13.2 7.4	6.88 6.38 5.98 6.25 5.65	2.41 2.04 2.01 2.36 2.07	8.51 17.90 17.60 9.49 11.20	1.55 1.98 1.59 2.36 1.20	2.01 1.33 1.35 .86 2.03	1.17 1.80 1.44 2.73 .78	.34 .31 .25 .21 .29	.07 .20 .15 .05 .14	<20 <20 <20 <20 <20	30 50 140 50 40	920 370 420 860 120	 (3) (3) (3) (3) (3) 	5 (5 (5 (5	8 16 22 21 14
10704009 10704034 10711131 10713112 10722052 10722078 10722145 10723027 10748001 10748002	70 70 71 72 72 72 72 72 74 74	4 4 1 3 2 2 2 3 8 8	9 34 131 112 52 78 145 27 1 1	785.09 785.34 791.31 794.12 801.52 801.78 802.45 802.77 824.08 824.08	49.9 39.8 46.1 34.7 42.8 45.80 45.30 41.00 37.10 36.60	13.9 12.1 9.2 10.9 13.40 13.30 12.90 11.40 11.30	13.60 11.20 7.00 12.90 7.04 12.70 13.30 13.80 8.64 8.52	2.98 3.24 2.93 6.26 2.85 7.97 8.15 7.62 2.16 2.17	4.47 13.50 13.50 14.90 14.40 3.08 3.50 7.13 16.80 17.00	3.11 2.58 1.34 2.68 1.27 4.86 4.93 3.76 1.80 1.73	1.02 .67 2.69 .43 4.73 .84 .63 .86 .35 .32	3.18 2.99 1.02 2.71 1.37 3.11 3.34 3.30 2.76 2.70	.53 .38 .37 .42 .20 .47 .46 .52 .47 .46	.07 .25 .11 .20 .20 .10 .12 .20 .31 .31	<pre><20 <20 <20 <20 <20 <20 <20 <20 <20 <20</pre>	60 60 70 330 180 40 <20 30 30 250	150 320 150 200 130 91 62 610 36 39	000000000000000000000000000000000000000	<5 <5 28 6 13 <5 10 <5 190	47 34 23 75 16 56 48 66 36 56
10752123 10754124 10761071 10765110 10771148	75 75 76 76 77	2 4 1 5 1	123 126 71 110 148	830.73 833.76 838.21 844.60 848.48	48.60 60.40 54.50 48.70 51.20	15.60 14.70 18.70 14.50 16.00	10.40 7.78 5.61 8.33 6.50	2.97 2.04 3.01 2.63 2.81	4.38 1.25 1.75 6.73 6.32	2.10 2.49 2.39 1.85 2.10	.22 2.90 .27 .80 .53	3.93 2.20 4.64 3.32 3.28	.34 .28 .40 .58 .14	.27 <.02 <.02 .26 .03	<20 <20 <20 <20 <20 <20	50 50 80 190 210	420 540 100 1,300 1,300	(3 (3 (3 (3 (3	<5 <5 <5 21	47 16 97 49 41
10772142 10773138 10781016 10781098 10781123	77 77 78 78 78	2 3 1 1 1	142 138 16 98 123	849.92 851.38 856.66 857.48 857.73	51.80 42.60 35.40 44.70 46.90	15.30 11.20 6.4/ 10.20 14.10	6.18 12.20 4.83 10.60 7.42	2.58 2.58 1.4/ 2.29 2.49	6.30 10.80 26.00 11.90 9.47	2.05 2.08 .92 1.82 2.38	.65 1.66 1.26 1.75 .49	3.04 2.61 .55 1.85 3.37	.18 1.11 .08 .44 .28	.06 .12 .19 .08 .06	<20 <20 <20 <20 <20 <20	80 50 140 40 40	2,200 510 430 570 1,300	 (3) 	<5 <5 14 <5 <5	37 32 21 28 34
10791062 10794013 10795140 10801053 108010/1	79 79 79 80 80	1 4 5 1 1	62 13 140 53 71	866.62 870.63 873.40 876.03 876.21	48.70 52.50 37.60 41.40 44.10	12.50 16.60 7.30 8.79 9.73	12.00 5.54 5.19 6.72 7.95	2.52 2.73 1.48 1.80 1.89	6.66 5.39 23.60 18.40 15.30	1.93 2.04 1.07 1.27 1.52	2.31 .83 1.52 1.69 1.90	2.17 3.69 .76 1.43 1.65	.38 .26 .14 .16 .30	.04 .03 .12 .07 .08	<20 <20 <20 <20 <20 <20	90 210 140 60 50	370 1,100 600 910 660	<3 <3 <3 <3 <3	<5 520 8 9	39 46 17 24 29
10801072 10811122 10821044 10822073 10825111	80 81 82 82 82	1 1 2 5	71 122 44 73 111	876.21 886.22 894.94 896.73 901.61	43.80 39.00 52.90 28.50 58.20	9.62 7.88 11.70 5.57 11.70	7.94 8.23 6.22 3.73 8.00	1.80 5.32 1.88 1.44 2.15	15.60 14.90 9.06 31.20 4.96	1.63 1.30 2.22 .88 2.01	1.86 1.83 2.20 1.26 2.89	1.68 1.08 2.81 .81 1.31	.31 .24 .30 .15 .17	.08 .30 .07 .17 .05	<20 <20 <20 30 30	40 50 150 40 90	510 430 2,200 980 500	3 3 3 3 3 3 3 3	<5 <5 <5 <5	23 27 25 13 17
10831079 10833061 10842018 10842115 10851006	83 83 84 84 85	1 3 2 2 1	79 61 18 115 6	904.79 907.61 914.68 915.65 922.06	52.80 37.60 50.00 36.60 28.70	10.80 6.94 12.10 7.41 7.01	9.17 4.43 8.48 7.50 8.03	2.58 1.41 2.61 7.25 7.62	7.90 24.30 8.79 14.60 19.00	1.57 .92 1.53 1.08 1.21	2.63 1.61 2.89 1.86 1.74	1.24 .68 1.15 .75 .98	.14 .09 .15 .11 .13	.09 .13 .08 .29 .48	<20 <20 <20 20 <20	270 30 90 30 210	450 1,400 470 200 440	(3 (3 (3 (3 (3	27 <5 <5 20 23	29 13 19 41 53
10851007 10852010 10852067 10854042 10856065	85 85 85 85 85	1 2 2 4 6	6 10 67 42 65	922.06 923.60 924.17 926.92 930.15	28.80 46.00 13.40 57.70 35.50	6.97 11.50 .35 13.10 8.31	7.97 10.20 <.04 7.77 5.18	7.55 2.86 .50 2.96 1.79	18.80 9.57 47.60 2.30 23.30	1.22 1.63 <.15 1.67 1.01	1.71 2.71 .04 3.58 2.09	.97 1.54 <.02 1.42 .81	.13 .17 <.05 .20 .14	.47 .07 1.03 .06 .23	<20 <20 <20 <20 <20 20	180 90 30 100 120	390 360 24 390 750	(3 (3 (3 (3) (3)	9 <5 <5 <5 <5	42 28 <5 180 20
10861082 10866065 10866089 10873081 10874064	86 86 86 87 87	1 6 3 4	82 65 89 81 r 64 g	931.82 939.15 939.39 943.81 945.14	47.30 57.40 37.70 57.30 56.40	11.00 13.60 8.98 13.70 13.90	8.49 8.25 7.09 10.70 8.41	3.64 2.82 2.60 2.90 3.21	9.41 2.14 19.10 .71 1.81	1.37 1.71 1.16 1.62 1.62	2.90 3.56 2.31 3.75 3.70	1.31 1.55 .87 1.30 1.36	.20 .25 .1/ .13 .15	-28 -10 -50 -09 -25	<20 50 <20 <20 <20 <20	60 80 60 80 260	1,500 590 1,600 460 780	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<5 7 <5 <5 7	17 28 12 <5 23
10874080 10882114 10883029 10883084 10891065	87 88 88 88 88 89	4 2 3 3 1	80 b 114 r 29 b 84 g 65 b	945.30 951.64 952.29 952.84 958.65	45.00 53.50 46.80 59.90 56.20	11.60 13.10 12.00 14.60 14.40	11.70 10.50 10.40 6.49 9.51	2.27 2.77 2.30 2.94 2.67	1.18 3.98 1.25 .91 .76	1.52 1.45 1.43 1.59 1.71	3.12 3.74 3.48 4.12 3.83	1.23 1.32 1.09 1.44 1.39	.20 .23 .27 .16 .14	-08 -33 -04 -04 -08	80 <20 90 <20 <20	60 60 310 130 220	2,600 770 4,300 1,300 1,500	0 3 0 0 0	38 6 31 <5 8	93 7 150 13 41

shale from lithologic Unit 8 are given in Table 6 and plotted in Figure 7. These samples are indicated in Table 2 by "r" (red), "g" (green), and "b" (black) following the interval designations for samples. Carbonate-free concentrations of each element were calculated by dividing the bulk concentration, in percent or parts per million, by the fraction of noncarbonate material. For example, if a sample contains 25% CaCO₃ (noncarbonate fraction = 0.75) and 90 ppm Cu, then the carbonate-free concentration of Cu is 90/0.75 = 120 ppm. For purposes of this calculation, percent CaCO₃ was determined by the total-Ca (XRF) analysis. Figure 8 is a plot

Table 2. (Continued).

ppm Cr	ppm Cu	ppm Ga	ppm Li	ppm Mo	ppm Ni	ppa Pb	ppm Sc	ppm Sr	ppa Th	ppm U	ppm V	ppm Zn	ppm Zr	ppm Y	ppm La	ppm Ce	ppm Nd	ppm Dy	ррш Үр	I CaCO3
40 110 180 19 37	35 57 62 27 27	40 <20 80 <20 <20	25 47 87 18 20	<5 <5 <5 <5 <5	25 59 110 13 25	<20 40 40 <20 20	7 19 24 <5 8	500 280 350 380 420	20 20 40 <10 10	<100 <100 200 <100 <100	43 310 170 34 44	65 110 160 40 50	50 130 170 20 <10	14 28 43 8 17	11 19 45 <5 20	60 50 110 <30 40	<50 50 50 <50 <50	20 16 27 <5 <5	<2 3 6 <2 <2	63.2 20.7 4.8 43.2 42.9
130 100 52 13 100	130 56 28 16 68	40 20 <20 <20 80	76 45 18 <5 59	(5 (5 (5 (5 (5))	97 61 18 <5 110	<20 <20 <20 <20 60	21 23 7 <5 24	300 300 380 250 240	20 <10 <10 <10 140	<100 100 200 <100 400	140 100 48 <5 130	190 130 36 <5 100	170 100 40 <10 110	27 31 13 <5 29	22 31 5 (5 26	60 80 <30 <30 120	<50 <50 <50 <50 290	11 <5 23 <5 130	4 <2 <2 <2 8	4.7 11.2 68.0 96.8 10.3
46 43 41 200 58	99 25 19 16 32	40 <20 <20 1,500 <20	<5 42 29 150 37	<5 <5 <5 110 <5	10 34 25 70 38	30 <20 <20 510 <20	<5 11 9 120 13	340 380 310 380 420	<10 <10 <10 500 10	200 <100 <100 8,100 <100	26 62 52 46 80	85 54 53 27 75	30 <10 20 80 40	12 18 18 140 26	10 21 9 420 29	40 <30 <30 1,600 60	80 <50 <50 <50 <50	26 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2	93.4 42.7 43.0 63.7 40.2
18 45 120 56 93	16 110 28 29 39	60 70 <20 <20 <20	35 21 47 34 36	(5) (5) (5) (5) (5)	25 13 45 13 39	<20 <20 <20 <20 <20	6 8 15 7 10	420 440 230 370 240	<10 <10 <10 10 10	<100 <100 <100 <100 <100	37 67 110 90 110	49 57 94 42 53	70 90 180 90 100	13 18 29 18 14	19 23 33 19 11	<30 30 40 <30 <30	<50 90 <50 <50 60	<5 7 <5 17 15	<2 <2 2 3 3	52.1 70.0 3.4 27.5 27.3
160 120 170 97 40	47 64 62 41 26	60 <20 <20 <20 <20	51 89 26 35 27	(5 (5 (5 (5	72 65 25 55 34	<20 <20 <20 <20 <20 <20	25 18 15 19 8	300 1,500 400 410 340	<10 20 <10 10 <10	<100 <100 <100 <100 <100	160 150 150 140 65	110 120 100 110 59	40 160 160 230 30	35 27 22 29 13	38 25 17 30 6	80 70 30 70 <30	60 60 50 <50 <50	18 16 17 <5 8	5 3 3 <2 <2 <2	9.4 39.6 31.4 27.7 43.4
69 270 240 300 51	48 18 25 39 36	60 90 <20 <20 <20	36 13 <5 27 34	<5 <5 <5 <5	54 38 29 59 44	<20 <20 <20 <20 <20 <20	11 21 14 20 10	390 540 410 590 270	20 <10 <10 <10 10	100 <100 <100 <100 <100	120 150 120 160 140	56 69 53 79 63	<10 130 60 110 130	23 19 11 12 21	28 21 <5 9 16	60 40 <30 <30 <30	<50 <50 <50 <50 <50	18 <5 <5 <5 20	<2 <2 <2 <2 <2 3	33.7 70.2 70.2 47.7 23.9
740 38 200 45 140	72 42 67 21 32	<20 <20 <20 70 <20	13 32 10 36 11	7 <5 <5 <5	84 63 37 34 24	50 <20 <20 20 <20	40 7 19 10 11	580 220 480 450 360	40 <10 <10 <10 <10	100 <100 <100 <100 <100	320 120 230 92 120	110 85 100 71 100	200 140 200 120 110	38 18 30 24 25	43 20 22 27 18	60 40 40 <30 40	100 70 <50 <50 <50	36 7 12 <5 <5	5 3 9 2 2	37.0 6.4 36.4 41.8 35.4
68 80 63 200 68	29 110 82 140 37	<20 <20 <20 <20 <20 <20	27 20 21 26 27	(5) (5) (5)	41 30 35 45 55	<20 <20 <20 <20 <20 <20	9 14 7 20 15	250 420 400 420 230	<10 <10 20 <10 <10	<100 <100 200 <100 <100	95 150 150 250 100	66 88 84 120 48	140 160 150 220 90	18 17 17 12 23	12 27 12 19 17	<30 40 40 <30 40	<50 <50 50 <50 <50 <50	<5 <5 7 15 <5	<2 <2 <2 3 <2	15.2 32.0 31.4 16.9 20.0
180 200 72 350 48 210 230 300 140 210	140 120 50 130 44 140 120 180 69 110	40 30 <20 120 60 50 <20 <20 <20 <20 60	20 30 33 36 17 22 13 50 20 30	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	160 93 80 160 67 85 79 130 53 68	<pre> <20 <20</pre>	28 30 13 45 27 35 30 38 21 20	540 510 280 450 250 340 240 370 310 420	<10 <10 <10 20 <10 <10 130 <10 20	<100 200 <100 200 <100 <100 <100 <100 <1	300 270 160 400 310 350 310 390 210 310	170 100 83 130 33 140 110 140 110 110	190 220 140 300 20 360 190 250 190 320	36 19 26 38 15 43 30 39 32 43	36 29 25 36 24 40 24 29 24 42	100 80 40 140 50 90 60 80 70 90	<50 <50 50 70 <50 70 <50 350 50 <50 50 <50	7 10 20 38 13 12 <5 150 14 29	3 3 4 4 3 10 3 8	8.0 24.1 24.1 26.6 25.7 5.5 6.2 12.7 30.0 30.4
58 81 200 270 570	100 110 71 79 250	<20 30 <20 40 70	22 16 13 <5 12	<5 (5 (5 (5) (5)	35 38 110 81 170	<20 20 <20 <20 <20 <20	26 20 12 29 22	390 290 390 460 450	<10 10 <10 50 40	<100 <100 <100 <100 <100 200	320 180 280 260 330	68 190 110 120 130	320 300 390 310 320	29 43 26 41 17	45 36 31 49 47	70 80 <30 160 120	60 50 <50 70 <50	20 15 <5 16 <5	4 5 <2 3 5	7.8 2.2 3.1 12.0 11.3
420 100 140 150 220	230 69 11 30 310	30 <20 100 <20 <20	8 17 26 17 21	5 5 5 5 5 5 5	120 89 60 86 80	<20 <20 <20 <20 <20 <20	22 16 34 20 15	490 440 500 350 430	<10 <10 10 <10 <10	<100 <100 300 <100 <100	300 190 140 160 290	130 110 51 90 120	190 260 250 150 230	15 38 37 25 19	58 34 16 18 24	90 60 80 60 <30	<50 70 <50 <50 70	5 22 31 13 20	2 3 6 2 3	11.2 19.3 46.4 21.2 16.9
65 130 49 89 62	73 170 12 160 30	<20 80 60 60	24 22 21 31 30	<5 <5 <5 <5	91 88 37 58 62	<20 <20 <20 <20 <20 <20	18 9 8 15 17	380 770 360 510 480	<10 30 20 <10 <10	<100 200 200 <100 <100	220 270 98 150 150	160 140 70 120 110	170 300 50 300 320	32 31 23 25 35	33 88 23 34 37	50 190 60 80 90	<50 90 60 60 <50	14 53 17 9	<2 3 3 3 <2	11.9 9.6 42.1 32.9 27.3
56 52 220 49 100	22 28 280 25 33	<20 <20 30 <20 20	21 23 23 15 32	<5 <5 <5 <5 9	49 44 60 38 60	<20 <20 <20 <20 <20 20	13 11 15 11 16	390 230 420 430 270	<10 <10 <10 <10 <10	<100 <100 <100 <100 <100 <100	110 99 210 70 130	97 98 82 66 87	170 200 90 60 190	27 27 24 30 24	21 25 39 35 21	70 60 70 70 40	<50 <50 <50 <50 <50	11 18 <5 <5 21	<2 3 5 <2 2	27.9 26.6 16.2 55.7 8.9
140 53 78 69 92	28 19 56 22 24	100 <20 30 30 140	44 19 45 26 23	00 00 00 00 00 00 00 00	87 37 76 76 88	<20 <20 <20 20 20	26 15 23 13 25	390 470 390 250 360	40 <10 10 40 10	200 <100 <100 <100 300	190 78 150 130 150	130 64 120 120 150	270 70 130 190 250	33 20 30 24 29	30 10 46 22 31	110 50 120 60 120	<50 <50 <50 110 <50	23 <5 12 57 33	5 <2 3 5 2	14.1 43.4 15.7 26.1 33.9
77 120 <5 93 46	21 35 <5 41 25	<20 40 40 <20 <20	23 35 <5 38 14	55 55 55 55	67 93 <5 170 45	<20 <20 <20 <20 <20 <20	11 26 6 16 14	310 400 160 250 460	<10 20 <10 20 <10	<100 <100 100 <100 <100	120 150 14 190 110	120 130 14 97 66	60 120 70 200 110	23 28 14 25 25	29 38 22 54 19	40 100 <30 90 60	<50 <50 <50 60 <50	9 12 <5 16 6	3 3 <2 3 <2	33.6 17.1 85.0 4.1 41.6
81 100 50 110 140	120 82 17 29 75	<20 30 <20 <20 60	25 60 18 10 35	<5 <5 <5 <5 <5	65 71 44 40 97	<20 60 <20 <20 <20	18 25 24 7 32	290 290 390 220 230	<10 100 <10 <10 30	<100 200 <100 <100 100	150 120 100 180 190	130 140 85 100 73	210 120 130 170 70	29 32 30 10 34	17 33 32 6 45	<30 140 50 <30 110	90 240 <50 <50 70	38 96 <5 <5 26	4 7 3 <2 5	16.8 3.8 34.1 1.3 3.2
290 100 450 190 98	220 46 320 95 81	<20 <20 40 <20 20	28 18 49 53 31	23 <5 25 <5 <5	360 40 390 48 65	<20 <20 <20 <20 <20 <20	10 14 17 22 23	190 180 240 230 210	<10 <10 10 <10 <10	<100 900 <100 <100 <100	1,000 120 1,300 310 280	1,800 66 1,400 130 350	180 170 60 240 190	22 31 45 24 22	8 25 44 39 29	<30 50 130 90 60	<50 <50 90 <50 <50	13 <5 9 17 <5	5 2 7 4 3	2.1 7.1 2.2 1.6 1.4

of $CaCO_3$ determined by the total-Ca method and by the shipboard carbonate-bomb method in 121 samples that either were splits of the same sample or were collected in close proximity within relatively homogeneous lithologies. Figure 8 shows that there is good agreement between the two methods.

It is apparent from Table 6 and Figure 7 that concentrations of Co, Cr, Cu, Mo, Ni, V, and Zn are considerably higher in black-shale than in either red or green claystone. The enrichment of certain trace elements especially Cu, Zn, Mo, V, Ni, and Cr—in sediments and rocks enriched in organic matter has been reported by

Table 2. (Continued).

Sample	Core	Section	Interval	DE PTH-m	X S102	X A1203	% Fe203	I MgO	1 Ca0	% Na20	% K20	X T102	X P205	Z MnO	ppm As	ppm B	ppm Ba	ppm Be	ppm Cd	ppm Co
10891075 10892060 10892061 10896130 10903055	89 89 89 89 90	1 2 2 6 3	75 60 r 60 r 130 r 55 g	958.75 960.10 960.10 966.80 970.55	34.50 52.80 52.90 58.60 31.10	8.67 13.30 13.30 13.90 7.70	5.03 8.86 9.11 8.10 8.73	2.12 2.44 2.46 2.98 8.00	22.20 .66 .67 .93 15.80	.91 1.51 1.48 1.78 .84	2.23 3.85 3.86 3.77 2.10	.79 1.32 1.32 1.46 .79	.21 .14 .15 .21 .11	.82 .03 .03 .06 1.15	<20 <20 90 20 <20	50 100 340 90 220	1,900 2,400 3,200 1,400 420	<3 3 3 3 3	<5 <5 20 8 8	6 120 150 53 24
10903062 10911096 10912103 10936083 10936089	90 91 91 93 93	3 1 2 6 6	62 b 76 r 103 g 83 b 89	970.62 976.76 978.53 998.33 998.39	59.00 49.00 56.70 55.80 53.30	14.60 12.60 13.80 13.50 11.90	6.97 8.56 11.00 7.48 10.70	2.94 2.42 2.76 3.43 2.71	.86 .86 .76 2.73 .78	1.72 1.38 1.63 1.52 1.38	3.94 3.52 3.70 3.64 3.22	1.59 1.22 1.40 1.18 1.06	-17 -24 -20 -16 -14	.06 .05 .07 .28 .07	<20 90 <20 30 60	120 80 90 110 330	1,200 2,400 2,100 5,100 4,200	<3 3 3 3	12 17 <5 <5 11	25 130 14 140 180
10936092 10942026 10942035 10942036 10942104	93 94 94 94 94	6 2 2 2 2	92 26 g 35 b 35 b 104 r	998.42 1,000.76 1,000.85 1,000.85 1,001.54	60.50 62.40 57.30 52.40 52.10	13.20 12.60 12.50 12.80 12.60	8.26 8.50 9.20 8.86 9.02	2.87 2.73 3.43 2.82 2.84	.86 .72 1.39 2.18 2.21	1.71 1.56 1.51 1.49 1.42	3.24 3.13 2.97 3.05 3.03	1.49 1.25 1.22 1.15 1.14	.16 .12 .19 .17 .17	.06 .04 .23 .07 .06	30 <20 <20 50 30	270 80 80 110 110	2,000 1,100 2,100 3,400 3,400	<3 3 3 3 3	19 <5 <5 9 <5	64 13 9 73 53
10952120 10952127 10953038 10958000 10901021	95 95 95 95 96	2 2 3 8 1	120 g 127 b 38 r 0 b 21	1,010.70 1,010.77 1,011.38 1,014.55 1,017.21	51.00 58.30 43.60 57.40 60.70	11.10 13.80 10.80 12.40 13.10	8.78 7.73 9.66 10.40 8.12	2.67 3.01 2.33 2.94 2.81	8.26 1.40 1.09 3.02 .79	1.35 1.52 1.31 1.61 1.64	2.74 3.39 2.71 2.94 2.97	1.08 1.31 .97 1.28 1.24	.16 .17 .30 .15 .16	.20 .04 .04 .06 .09	<20 <20 50 <20 20	220 100 110 300 60	1,200 330 300 340 300	3 3 3 3 3 3 3 3 3	7 (5 33 51 (5	16 15 170 22 33
10961052 10961063 10961070 10964024 10964040	96 96 96 96 96	1 1 4 4	52 b 63 g 70 g 24 b 40	1,017.52 1,017.63 1,017.70 1,021.74 1,021.90	60.50 63.40 61.20 59.90 65.00	13.30 13.10 12.30 11.50 11.20	6.55 6.46 6.68 8.05 5.99	2.91 2.88 2.91 2.50 2.59	.82 .97 2.62 .68 2.39	1.59 1.69 1.52 1.41 1.47	3.15 2.81 2.84 2.83 2.55	1.16 1.27 1.18 1.03 1.17	.15 .24 .16 .17 .16	.03 .03 .11 .02 .07	<20 <20 <20 <20 <20 <20	70 80 50 90 50	280 320 290 360 310	3 (3 (3 (3)	<5 9 <5 5	49 51 10 52 15
10964047 10964048 10973070 10973085 10974056	96 96 97 97 97	4 3 3 4	47 47 70b 85g 56b	1,021.97 1,021.97 1,029.70 1,029.85 1,031.06	45.80 45.80 34.20 53.40 55.10	7.53 7.46 8.36 12.10 12.20	8.31 8.54 6.87 9.21 7.03	2.85 2.83 1.92 3.32 2.82	13.50 13.70 6.73 4.88 1.03	.98 1.01 1.30 1.44 1.38	1.72 1.71 1.98 2.86 3.09	.72 .73 .71 1.11 1.03	1.02 1.08 .29 .15 .25	.48 .50 .16 .27 .03	<20 <20 50 <20 20	50 70 50 80 200	310 340 240 380 380	0 0 0 0 3	<5 <5 100 8 8	8 13 52 22 19
10974085 10983050 10983059 10983128 10983133	97 98 98 98 98	4 3 3 3	85 g 50b 59 g 128b 133g	1,031.35 1,038.50 1,038.59 1,039.28 1,039.33	61.00 48.60 57.10 52.70 55.80	12.90 10.60 12.50 11.80 12.20	7.87 8.25 11.20 8.68 11.40	3.20 2.53 3.12 2.75 2.97	1.13 .75 1.04 .71 1.21	1.41 1.34 1.49 1.34 1.48	3.37 2.85 3.27 3.15 3.20	1.13 .95 1.18 .98 1.28	.44 .18 .14 .14 .16	.07 .05 .10 .06 .12	<20 50 <20 20 60	90 190 80 100 70	350 370 340 380 370	3 3 3 3 3 3 3	<5 86 <5 37 <5	20 42 20 140 28
10983134 10992032 10992046 10992060 10995067	98 99 99 99 99	3 2 2 2 5	133g 32b 46g 60g 67b	1,039.33 1,045.82 1,045.96 1,046.10 1,050.67	55.60 62.20 53.90 17.00 56.90	12.20 13.10 9.37 3.95 11.70	12.00 7.45 5.56 3.00 10.10	2.91 2.94 2.24 1.25 2.91	1.27 .72 10.90 38.50 .65	1.51 1.44 1.12 .40 1.30	3.18 3.46 2.43 .92 3.45	1.34 1.11 .89 .33 1.06	.17 .14 .18 .08 .18	.13 .03 .62 2.33 .04	50 <20 <20 <20 <20 <20	80 70 150 90 130	390 300 320 140 360	00000	<5 <5 6 27 <5	27 35 15 9 110
10995083 11001099 11001115 11001126 11003128 11003133 11003134 11003142 11011045 11012004	99 100 100 100 100 100 100 100 101 101	5 1 1 3 3 3 1 2	83g 99b 115g 126 128 133 b 133 b 142 g 145 b 4 b	1,050.83 1,053.99 1,054.15 1,054.26 1,057.28 1,057.33 1,057.33 1,057.42 1,063.45 1,063.54	64.90 59.90 67.70 57.30 63.40 58.50 58.80 45.90 61.20 66.50	11.90 12.30 11.20 10.10 12.10 10.30 10.30 6.96 9.89 9.80	7.42 8.48 6.19 8.11 8.14 7.42 7.39 5.29 9.88 6.25	2.85 2.96 2.77 3.05 2.92 2.68 2.67 1.84 2.31 2.58	.76 .90 .68 6.51 .61 6.03 6.07 18.00 .55 2.95	1.37 1.42 1.32 1.06 1.20 .99 1.06 .96 1.11 1.18	3.20 3.56 2.97 2.73 3.53 2.73 2.78 1.86 2.93 2.59	1.06 1.28 1.03 .87 1.15 .90 .91 .62 .89 .92	.21 .20 .17 .16 .14 .12 .12 .24 .12 .12 .12	.04 .05 .04 .33 .04 .13 .13 1.07 .03 .06	<20 20 20 <20 30 <20 <20 <20 <20 60 40	70 240 70 100 160 40 50 60 200	350 400 370 300 540 380 320 1,600 990 670	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<pre><5 6 6 <5 <5 10 <5 8 24</pre>	21 58 26 27 74 20 16 19 76 25
11012016 11012017 11015034 11023113 11023122	101 101 101 102 102	2 2 3 3	16 16 34 r 113 g 122 b	1,063.66 1,063.66 1,068.34 1,075.13 1,075.22	52.30 52.50 64.60 58.90 56.20	7.24 7.27 10.40 11.70 12.10	3.63 3.65 9.96 5.73 8.11	1.72 1.70 2.85 2.83 2.84	15.20 15.20 .61 5.50 .80	.91 .87 1.25 1.24 1.29	1.94 1.95 2.92 3.21 3.29	.61 .62 .98 1.06 1.03	.23 .24 .14 .16 .17	.53 .53 .07 .15 .05	<20 90 <20 50 30	30 30 70 210 270	1,000 1,100 390 410 430	<3 <3 <3 3 3	<5 6 <5 69 20	12 13 64 38 100
11023137 11026003 11034029 11034035 11034131	102 102 103 103 103	36444	137 3 r 29 b 35 g 131 b	1,075.37 1,078.53 1,084.79 1,084.85 1,085.81	47.10 65.40 61.40 56.00 58.40	7.79 10.50 10.50 7.44 9.37	3.36 9.12 6.78 4.49 7.38	1.88 2.96 2.78 2.31 2.98	18.10 .86 3.71 12.60 6.31	.93 1.20 1.32 .89 1.09	2.08 2.85 3.07 2.01 2.63	.64 .93 1.27 .63 1.08	.13 .21 .17 .12 .16	.62 .22 .09 .65 .19	<20 <20 <20 <20 <20 <20	50 30 60 150 60	300 300 390 310 300	3 3 3 3 3 3	10 7 12 32 <5	12 12 60 17 30
11034135 11042142 11043006 11043014 11043047	103 104 104 104 104	4 2 3 3 3	135 9 142 9 6 b 14 47 9	1,085.85 1,087.92 1,088.06 1,088.14 1,088.47	54.10 61.90 60.00 58.60 64.30	7.39 10.60 9.45 9.70 10.40	6-14 7.03 7.15 8-29 7.22	2.78 2.87 2.43 2.72 3.12	12.60 3.30 3.80 2.74 1.95	.71 1.14 1.21 1.40 1.34	1.82 3.08 2.84 2.99 3.10	.55 .93 1.07 1.52 1.21	.10 .13 .17 .26 .16	-58 -15 -21 -21 -07	<20 <20 50 <20 <20	50 50 170 230 60	260 300 460 630 430	3000	<5 <5 (5 18 (5	11 23 30 49 45
11043054 11043056 11053089 11053140 11054010	104 104 105 105 105	3 3 3 4	54 9 54 9 89 b 140 9 10 b	1,088.54 1,088.54 1,097.89 1,098.40 1,098.60	68.90 68.60 56.20 62.50 54.60	9.88 9.82 12.10 12.30 11.20	6.54 6.49 6.51 7.32 7.45	3.30 3.28 3.09 3.17 2.78	.89 .85 .93 .83 4.39	1.04 1.09 1.27 1.36 1.41	2.76 2.73 3.31 3.58 3.40	.85 .84 1.05 1.14 1.20	.11 .11 .15 .18 .30	.64 .48 .08 .10 .16	<20 <20 50 20 20	210 70 90 50 60	400 330 380 320 400	(3 (3 (3 (3	27 (5 (5 (5) (5)	20 14 13 16 25
11054031 11055000 11055054 11055093 11055094	105 105 105 105 105	4 5 5 5	31 g 0 r 54 93 93	1,098.81 1,100.00 1,100.54 1,100.93 1,100.93	62.80 65.50 65.10 64.30 64.70	11.90 10.30 10.60 11.00 11.00	7.52 7.67 7.94 8.91 8.93	3.25 3.32 3.43 3.39 3.38	.68 1.67 1.36 .82 .86	1.36 1.10 1.12 1.15 1.19	3.58 3.09 3.12 3.28 3.26	1.22 .93 .93 .97 .99	.17 .16 .19 .19 .19	.07 .08 .08 .09 .09	<20 <20 <20 <20 <20 <20	40 190 60 90	320 340 360 370 470	00000	<5 6 38 24 <5	11 42 21 26 19
11055110 11055139 11056004 11056015 11056024	105 105 105 105 105	5 6 6	110 139 4 15 24	1,101.10 1,101.39 1,101.54 1,101.65 1,101.74	59.40 62.00 62.20 58.40 59.40	12.90 11.40 10.40 11.90 12.20	9.72 10.30 12.00 10.60 10.60	4.13 3.42 3.23 3.50 3.60	.77 .77 .57 2.32 1.32	1.23 1.29 1.14 1.31 1.20	3.74 3.67 3.70 3.58 3.69	1.05 1.03 .89 1.03 1.01	.15 .14 .16 .21 .18	.07 .05 .08 .23 .14	<20 <20 <20 <20 <20	70 90 90 50 80	360 360 360 290 380	0000	30 <5 94 <5 13	32 30 31 21 27
11058001 11058010	105 105	8 8	1 10	1,101.82 1,101.91	58.70 40.50	12.60 7.30	11.00 5.64	3.71 2.26	.84 20.50	1.43 .74	3.65 2.09	1.11 .58	.20 .11	.08 1.29	<20 <20	60 50	360 240	<3 <3	<5 9	11 15

many investigators (e.g., Wedepohl, 1964 and 1979; Brongersma-Sanders, 1965; Calvert and Price, 1970; Vine and Tourtelot, 1969 and 1970; Volkov and Fomina, 1974; Lange et al., 1978; Brongersma-Sanders, et al., 1980; Dean and Gardner, 1982). Comparison of concentrations of elements in other modern and ancient organic-carbon-rich sediments is discussed by Dean, Arthur, and Stow (this volume). The association of high trace-element concentrations with organic matter may be the result of concentration of these elements by or-

ganisms (bioconcentration), or by chemical sorption and precipitation. Marine plankton are known to concentrate trace elements, especially Pb, Ni, Cu, Zn, Mn, and Fe (Vinogradov, 1953; Goldberg, 1957; Boyle and Lynch, 1968; Martin and Knauer, 1973; Chester et al., 1978; Leinen and Stakes, 1979), and this suggests that bioconcentration may be an important mechanism for incorporation of certain trace elements in marine sediments rich in organic matter. The great effectiveness of adsorption of trace metals by clay minerals and organic

Table 2.	(Continued)	
----------	-------------	--

ppm Cr	ppm Cu	ppm Ga	ppm Li	ррш Мо	ppm N1	ppm Pb	ppm Sc	ppm Sr	ppn Th	ppm U	ppm V	ppm Zn	ppm Zr	ppm Y	ppm La	ppm Ce	ppm Nd	ppm Dy	ppm Yb	% CaC03
79 290 380 170 58	40 220 310 85 57	<20 <20 40 80 40	19 31 47 47 20	<5 8 9 7 <5	37 190 260 97 56	<20 <20 <20 70 <20	13 20 23 36 11	450 190 240 250 210	<10 <10 <10 70 30	<100 <100 <100 500 <100	120 570 740 260 150	66 260 300 170 96	110 170 280 230 <10	36 22 31 37 26	25 27 40 46 28	80 50 60 150 60	<50 <50 <50 110 70	6 <5 <5 40 9	3 4 7 8 5	39.6 1.2 1.2 1.7 28.2
150 180 97 140 250	84 170 100 70 250	80 <20 <20 180 50	57 38 32 52 35	<5 77 <5 11 5	80 490 61 320 300	<20 <20 <20 120 20	30 17 18 52 29	240 180 220 270 230	10 <10 <10 70 20	100 <100 <100 900 100	300 1,400 190 160 650	130 1,100 110 140 260	330 180 180 200 70	38 40 25 54 34	39 28 28 73 39	110 70 50 260 110	70 60 50 70 <50	26 21 16 25 35	6 7 4 7 7	1.5 1.5 1.4 4.9 1.4
160 82 120 290 220	130 100 37 230 210	80 <20 <20 110 <20	46 30 24 61 39	<5 <5 21 9	120 37 67 170 130	<20 <20 <20 70 <20	29 21 20 36 19	260 190 300 240 230	20 <10 <10 130 <10	<100 <100 <100 700 <100	300 180 140 590 500	160 95 160 430 410	280 160 230 200 180	40 23 35 51 28	53 39 31 62 33	170 110 <30 230 50	<50 50 <50 260 <50	35 9 <5 98 <5	7 3 <2 10 2	1.5 1.3 2.5 3.9 3.9
64 100 200 92 130	32 71 220 84 97	50 <20 30 70 50	28 54 50 40 43	<5 6 91 <5 18	47 50 650 65 85	<20 <20 <20 <20 <20 90	23 21 23 28 24	290 210 180 270 160	10 10 <10 40 <10	100 <100 <100 <100 100	160 390 2,100 240 300	63 300 1,300 88 140	30 230 250 250 200	34 28 61 30 33	45 30 42 27 32	130 50 130 60 100	80 60 130 <50 <50	6 20 42 66 <5	3 4 8 6 9	14.7 2.5 1.9 5.4 1.4
290 79 79 370 85	180 100 110 180 95	<20 <20 <20 <20 <20 <20	31 35 26 42 31	55555	72 87 37 93 35	50 <20 <20 <20 <20	22 25 19 21 17	160 200 170 170 160	10 <10 <10 <10 <10	<100 <100 <100 <100 <100	480 180 160 570 180	220 130 150 230 93	170 200 180 170 150	29 30 31 28 29	35 32 26 34 30	80 60 50 50 60	<50 <50 50 <50 <50	12 9 8 9 12	43453	1.5 1.7 4.7 1.2 4.3
46 59 230 110 560	37 41 380 92 230	<20 30 <20 50 <20	28 25 26 61 54	<5 <5 170 6 <5	28 52 310 53 72	<20 <20 20 <20 <20 <20	13 21 16 25 17	260 290 210 210 190	<10 10 <10 <10 20	<100 <100 <100 <100 <100	130 140 2,400 300 590	56 78 5,200 150 290	120 60 80 260 190	130 160 62 41 57	72 100 36 46 39	190 250 80 80 50	140 150 60 50 110	38 37 14 19 28	7 8 10 7 7	24.1 24.5 12.0 8.7 1.8
87 110 61 210 83	74 260 71 210 77	<20 <20 <20 70 <20	48 53 48 61 47	<5 53 <5 65 11	39 310 37 300 73	<20 <20 <20 <20 <20 <20	23 17 19 24 18	160 140 150 170 170	20 <10 <10 <10 <10	<100 <100 <100 <100 <100	260 2,200 150 1,300 250	100 4,100 75 2,000 370	160 170 160 250 180	52 38 21 43 21	44 24 36 36 29	120 50 70 130 40	90 <50 <50 70 <50	19 <5 <5 39 15	5 8 2 10 3	2.0 1.3 1.9 1.3 2.2
70 130 68 28 540	83 92 86 23 180	<20 <20 50 50 170	49 28 29 16 50	11 <5 <5 <5 20	72 49 43 20 130	<20 <20 <20 20 90	17 23 18 5 39	180 150 260 200 150	10 <10 <10 10 30	<100 <100 <100 <100 900	270 210 130 50 320	250 130 65 35 240	160 140 <10 70 180	16 23 33 30 55	28 30 36 17 64	50 80 90 110 250	<50 <50 60 <50 <50	16 10 <5 30 <5	2 3 3 3 <2	2.3 1.3 19.5 68.7 1.2
66 220 96 85 180 51 69 36 420 93	82 120 130 64 130 67 67 98 120 89	<20 40 100 120 130 <20 <20 <20 <20 <20 100	35 42 48 41 47 22 28 23 35 44	<5 9 15 6 (5 (5 7 (5) 7 (5)	56 91 59 67 110 37 35 36 120 53	<20 20 70 50 100 <20 90 <20 20 <20	20 23 31 28 34 22 14 12 15 20	150 170 160 190 150 210 180 310 120 200	20 10 80 50 80 20 10 <10 <10 30	<100 <100 700 500 800 <100 900 100 <100 <100	140 260 170 130 220 140 110 66 230 170	72 120 96 83 110 75 61 61 130 85	160 90 170 140 200 150 140 80 150 200	28 33 44 46 39 23 21 31 21 21 28	32 36 61 52 54 27 20 32 20 37	80 220 170 190 60 40 90 50 110	70 60 90 80 120 <50 <50 <50 <50 <50	16 21 56 30 61 <5 11 <5 <5 14	2 6 7 6 6 2 3 3 3 3 3 3	1.4 1.6 1.2 11.6 1.1 10.8 10.8 32.1 1.0 5.3
45 47 86 110 270	57 62 49 100 170	<20 50 120 50 50	21 31 37 52 58	<5 6 7 <5 18	34 34 90 53 200	<20 40 <20 30 <20	12 11 32 20 28	300 300 140 240 170	<10 30 50 40 40	<100 <100 700 100 <100	100 87 120 200 430	110 68 92 93 130	60 100 170 240 250	32 37 37 32 33	24 30 56 29 33	70 100 210 130 70	<50 70 <50 <50 <50	11 17 13 15 9	3 4 5 6	27.1 27.1 1.1 9.8 1.4
50 59 80 62 55	65 32 81 60 77	80 <20 50 40 20	32 25 45 47 29	<5 <5 <5 <5 <5	29 40 110 50 54	<20 20 <20 <20 <20 <20	20 17 27 11 19	430 130 210 300 210	<10 <10 <10 20 <10	<100 <100 <100 200 100	100 97 200 120 130	70 62 140 77 78	180 160 270 140 140	34 28 27 26 19	34 20 25 22 20	80 40 60 90 50	<50 <50 <50 <50 <50	19 <5 22 25 <5	4 <2 7 <2 <2	32.3 1.5 6.6 22.5 11.3
37 64 66 160 75	48 52 76 110 76	20 <20 30 50 30	26 31 43 57 37	<5 <5 11 <5	33 44 100 150 83	<20 <20 <20 <20 <20 <20 20	15 17 13 28 27	290 140 200 220 180	10 <10 50 10 20	<100 <100 200 200 <100	94 120 260 360 180	79 90 140 100 110	30 110 180 290 120	23 23 21 41 29	28 24 29 41 26	60 60 130 70	<50 <50 170 <50 <50	<5 11 36 8 15	2 3 6 4 3	22.5 5.9 6.8 4.9 3.5
83 47 99 69 74	76 63 140 76 100	60 <20 <20 <20 30	54 39 59 45 51	5 <5 10 12 35	58 36 54 46 87	50 <20 <20 80 20	23 17 17 20 24	130 110 140 120 210	30 <10 <10 40 <10	<100 <100 <100 <100 <100	150 100 200 130 350	93 73 140 83 170	190 120 170 170 180	29 16 21 26 30	33 25 22 29 31	70 50 <30 80 100	50 <50 50 70 <50	18 <5 11 20 <5	4 <2 4 3 4	1.6 1.5 1.7 1.5 7.8
80 56 65 52 79	50 67 68 63 57	<20 40 60 50 30	41 44 56 50 45	6 (5 (5 (5) (5)	43 75 65 71 71	<20 <20 <20 <20 <20 <20	15 25 20 22 23	120 160 150 140 380	<10 10 <10 30 10	<100 <100 <100 200 <100	130 110 120 130 150	75 82 120 110 120	170 20 240 240 130	19 27 35 37 31	19 32 39 39 46	30 80 120 110 130	<50 <50 60 <50 <50	7 14 <5 12 13	2 3 5 6 3	1.2 3.0 2.4 1.5 1.5
99 160 210 70 63	210 69 56 42 63	70 30 30 <20 50	60 32 42 27 48	000000	97 93 82 78 72	20 <20 <20 <20 <20 <20	27 23 24 19 24	160 150 130 130 140	<10 <10 <10 <10 <10 <10	<100 <100 <100 <100 <100	160 300 300 82 130	140 110 110 82 100	260 120 230 120 290	35 27 31 30 36	33 33 55 27 33	120 90 180 70 120	80 <50 90 <50 <50	21 <5 22 <5 16	4 3 4 3 5	1.4 1.4 1.0 4.1 2.4
58 37	60 130	<20 90	36 30	(5 (5	75 47	<20 <20	18 15	170 150	<10 <10	<100 <100	100 75	83 49	180 150	24 27	12 33	<30 70	<50 <50	25 7	5 3	1.5

matter, and coprecipitation of trace metals, paticularly as sulfide minerals suggest that these processes also may play an important role in the removal of trace metals from seawater (Tourtelot, 1964 and 1979; Holland, 1979). Unfortunately, it is not possible to separate the effects of bioconcentration and chemical processes, especially in anoxic, organic-carbon-rich strata.

If thin beds of black shale are interstratified with other lithologies, these beds may become sinks for elements mobilized and transported in pore waters during compaction (Berner, 1969; 1975). We believe that our data (Table 2; Fig. 2) illustrate the importance of interbedded more-reduced and less-reduced strata on the migration and accumulation of trace elements, and on the relative mobility of different elements under reducing conditions. In Figure 9 we have plotted carbonatefree concentrations of Fe_2O_3 , Fe:Al, MnO, Ba, Co, Ni, Pb, Cr, Cu, Cd, Mo, V, and Zn in black-shale samples along with histograms of percent black-shale beds and mass accumulation rate (MAR) of organic carbon in

Table 3. Chemical	analyses of	samples	from	Leg	75,	Hole :	530B.
-------------------	-------------	---------	------	-----	-----	--------	-------

	Core	Section	Interval	DEPTH .	I S102	I A1203	I Fe203	I MgO	Z CaO	I Na20	X K20	% T102	Z P205	X MnO	ppm As	ppm B	ppm Ba	ppm Be	ppm Cd	ppm Co
20011055	1	1	55	.55	14.4	4.6	1.75	1.34	38.90	.95	.17	.16	.07	<.02	<20	50	500	<3	<5	5
20012047	1	2	47	1.97	28.0	6.5	3.19	2.21	23.60	3.01	.90	.29	-14	<.02	<20	120	1,100	<3	<5	9
20022092	2	2	92	4.82	31.8	7.9	3.89	1.94	20.50	3.07	1.03	.37	.15	<.02	<20	140	810	<3	18	6
20022134	2	2	134	5.24	40.3	10.8	4.90	2.63	9.73	3.49	1.62	.53	.24	.02	<20	150	750	<3	<5	9
20023031	2	3	31	5.71	37.6	9.4	4.39	2.30	13.20	3.34	1.46	.46	.23	.02	<20	90	740	<3	<5	6
20032053	3	2	53	8.83	22.4	6.5	2.54	1.68	30.50	2.23	.81	.25	.10	.03	<20	130	780	<3	05	8
20033125	3	3	125	11.05	45.1	9.6	4.98	2.40	7.95	3.73	1.78	.50	.18	.03	<20	160	1,200	<3	9	10
20041114	4	1	114	12.34	47.0	11.2	4.99	2.44	8.59	3.05	2.02	.58	.27	.03	<20	130	600	<3	<5	8
20043010	4	3	10	14.30	23.1	5.9	2.60	1.58	30.60	1.54	.34	.24	.13	.03	<20	90	790	<3	<5	8
20063034	6	3	34	23.34	12.5	3.9	1.61	1.17	41.50	1.23	.39	.14	.10	.02	<20	90	460	<3	17	10
20072070	7	2	70	25.60	47.3	10.2	4.81	2.18	11.00	2.63	1.91	.59	.24	.04	<20	110	430	<3	<5	9
20073030	7	3	30	26.70	35.2	7.0	3.40	1.69	19.90	2.66	1.13	.33	.16	<.02	20	180	630	<3	<5	11
20082065	8	2	65	29.95	54.3	7.4	3.63	1.56	5.24	3.46	1.52	.33	.13	.02	<20	210	920	<3	6	8
20093127	9	3	127	36.47	39.4	9.5	4.49	2.13	14.40	2.56	1.60	.45	.18	.03	<20	130	870	<3	<5	9
20103031	10	3	31	39.91	49.9	11.0	5.15	2.29	5.75	3.06	2.19	.54	.22	.03	20	260	880	<3	5	10
20103107	10	3	107	40.67	49.6	10.3	5.05	2.25	6.41	3.19	2.05	.50	.22	.03	<20	160	940	<3	<5	12
20112054	11	2	54	43.04	51.2	12.0	5.69	2.57	4.29	2.95	2.42	.62	.34	.04	<20	130	620	<3	<5	11
20122129	12	2	129	48.19	51.2	9.1	5.32	2.72	5.64	2.88	2.10	.45	.49	.03	<20	190	630	<3	<5	13
20143028	14	3	28	57.48	24.4	5.6	2.59	1.67	31.80	1.47	.73	.26	.11	.03	<20	90	550	<3	13	<5
20162066	16	2	66	65.16	60.2	9.0	4.42	2.21	1.09	3.15	2.00	.45	.15	.02	<20	120	2,000	<3	9	7
20172042	17	2	42	69.32	63.1	8.8	4.18	1.99	.72	3.28	1.86	.43	.12	.02	<20	130	810	<3	<5	10
20182045	18	2	45	73.75	61.0	9.0	4.59	2.09	.64	3.14	1.98	.43	.14	<.02	40	280	810	<3	18	13
20202105	20	2	105	83.15	53.9	8.9	4.30	2.27	6.78	2.86	1.98	.44	.12	.03	40	130	810	<3	6	14
20223084	22	3	84	91.84	51.9	8.7	4.30	2.15	7.60	3.11	1.85	.41	.13	.03	<20	220	900	<3	6	11
20232071	23	2	71	94.61	63.0	8.6	4.27	2.05	.67	3.18	1.84	.43	.11	<.02	<20	150	890	<3	<5	10
20252105	25	2	105	102.35	54.5	10.1	4.80	2.48	5.56	2.49	2.23	.47	.11	.03	<20	130	980	<3	29	13
20262100	26	2	100	105.30	59.8	11.0	5.69	2.49	.71	2.88	2.50	.54	.09	.04	<20	170	1,300	<3	9	17
20271066	27	1	66	107.86	37.8	6.1	2.89	2.81	21.30	1.81	1.14	.27	+11	<.02	<20	120	950	<3	<5	11
20271067	27	1	66	107.86	37.5	6.1	2.84	2.82	21.10	1.98	1.05	.27	.11	<.02	<20	90	930	<3	<5	8
20272052	27	2	52	109.22	57.6	11.0	5.46	2.50	1.54	2.85	2.42	.53	.12	.03	30	250	1,600	<3	5	14
20392034	39	2	34	151.04	24.8	6.2	2.78	1.75	31.80	1.35	.68	.27	.10	<.02	<20	120	510	<3	<5	6
20413045	41	3	45	158.05	27.7	8.0	3.66	2.09	27.10	1.69	1.12	.35	.11	<.02	<20	100	590	<3	<5	12
20443051	44	3	51	165.51	33.0	9.5	4.25	2.33	22.80	1.47	1.72	-40	.10	<.02	40	120	500	<3	<5	17
20443052	44	3	51	165.51	33.2	9.6	4.32	2.35	22.80	1.46	1.78	-40	.11	<.02	<20	120	520	<3	<s< td=""><td>16</td></s<>	16
20443071	44	3	71	165.71	46.3	13.0	6.28	3.15	8.94	2.06	2.85	-60	.13	.02	<20	150	750	<3	12	27

each core for Cores 86 through 105. Except for Mn, the elements plotted in Figure 9 are mostly concentrated in a zone between about 950 and 1050 m sub-bottom within Unit 8. Maximum concentrations are not all at the same depth, and this suggests that some elements may have been more mobile than others during diagenesis. Another possibility to explain systematic differences in element composition of black-shale beds through time is that the chemical composition of the organic matter that accumulated in the black shale beds changed with time, but this is unlikely; organic geochemical analyses do not indicate that there are any systematic long-term changes in amount or composition of organic matter in blackshale beds from bottom to top of Unit 8 (see Brassell et al., and Meyers, Brassell, and Huc, both this volume).

Manganese is the only element that is enriched in rocks below the black-shale maximum (Cores 97 to 98; 1026 to 1044 m). Figure 7 and Table 6 show that the concentration of manganese is significantly enriched in red and green claystone beds relative to black shale beds. Wedepohl (1964) and Vine and Tourtelot (1970) also noted that concentrations of manganese typically are lower in shales containing little organic matter. Some anoxic sediments may be relatively enriched in manganese due to local precipitation of Mn-rich carbonate phases (for example, Suess, 1979 and Pederson and Price, 1982). That the few high manganese concentrations in black-shale beds at Site 530 probably are associated with carbonates is indicated by a high positive correlation between concentrations of Mn and Ca (r = 0.85). The carbonate content of the black shales is highest in the lower part of the section (Fig. 2) which explains the higher concentration of manganese there. Any manganese that was not coprecipitated with carbonate quickly diffused out of the reduced sediment. For the same reason, manganese also is concentrated in red and green claystone at the contact between Unit 8 and the overlying red claystone of Unit 7 (Fig. 2).

The concentrations of Fe₂O₃ and Ba are not significantly higher in black, green, or red lithologies relative to each other, but they are higher in all three differentcolored lithologies above the black-shale maximum than in any lithology below the black-shale maximum, or in any other lithology in Hole 530A. This difference is greatest for barium, which is as much as an order of magnitude higher in the upper part of the section (Fig. 9). Barium probably also was concentrated in organic matter but diffused out of the black shale beds and became concentrated, probably as barite, in the upper part of Unit 8, with a maximum concentration about 60 m above the black-shale maximum. Diagenetic concentrations of barium as barite in association with organiccarbon-rich strata have been described from many DSDP sites (see review by Dean and Schreiber, 1978).

Of the remaining trace elements that are enriched in Unit 8 (Fig. 9), Cd, Zn, V, Mo, and Cu have maximum concentrations that correspond to the black-shale maximum in Cores 97 and 98, indicating that they have not migrated far from their organic source. These elements also are among the ones most commonly reported to be concentrated in black shales from other areas. Concentrations of these elements are highly correlated with each other (r > 0.85 for Cd, Zn, V, and Mo; (r > 0.65for Cu). Concentrations of Cr and Cu have maxima that correspond to the black shale maximum (Fig. 9), but also have maxima in the upper part of Unit 8 where black shale beds comprise less than 10% of the section. These second maxima above and about the same magnitude as the maxima for Cores 97 and 98 suggest that Cu and Cr may have been more mobile during diagenesis than Cd, Zn, V, or Mo. Maximum concentrations of Co, Ni, and Pb do not correspond to the black-shale maximum, and

Table 3. (Continued).

ppm Cr	ppm Cu	ppa Ga	ppm Li	ppm No	ppm Ni	ppm Pb	ppm Sc	ppm Sr	ppm Th	ppm U	ppm V	ppa Zn	ppm Zr	ppm Y	ppm La	ppm Ce	ppm Nd	ppm Dy	ррш ҮЬ	Z CeCO3
51	58	<20	30	<5	37	<20	<5	1,100	<10	<100	50	35	20	7	<5	<30	<50	<5	(2	69.5
82	59	30	46	8	52	<20	12	720	10	100	73	73	50	16	15	30	<50	9	12	42.1
92	54	40	45	6	47	<20	15	520	10	<100	67	68	60	17	14	50	(50	12	3	36.6
120	56	<20	73	9	69	<20	15	360	<10	<100	90	91	80	20	22	30	<50	C5	12	17.4
120	41	<20	54	13	79	<20	10	360	<10	900	71	64	90	19	12	30	<50	<5	<2	23.6
66	59	60	54	<5	47	<20	11	1,100	20	<100	68	63	<10	17	22	40	50	7	<2	54.5
150	68	60	70	38	80	<20	15	350	<10	<100	110	110	170	31	25	70	50	15	4	14.2
140	39	<20	71	<5	41	<20	13	350	<10	<100	100	73	120	23	17	<30	<50	15	4	15.3
65	65	40	39	5	38	<20	9	980	20	100	66	90	40	18	7	30	60	19	2	54.6
49	45	100	44	<5	28	20	13	1,800	20	200	59	31	40	14	14	80	<50	<5	<2	74.1
130	24	<20	40	8	35	<20	15	350	<10	<100	92	97	90	23	17	40	<50	<5	2	19.6
93	35	<20	36	<5	29	<20	17	650	30	<100	79	70	70	17	8	30	<50	<5	<2	35.5
71	59	20	34	6	49	<20	14	210	30	<100	80	82	60	12	10	30	90	18	2	9.4
130	59	<20	59	7	44	<20	18	580	10	<100	95	110	20	23	27	40	<50	<5	3	25.7
150	55	40	77	9	61	<20	21	270	20	100	100	87	<10	26	27	60	<50	5	4	10.3
140	54	30	56	8	68	<20	19	280	20	<100	100	110	30	26	27	70	<50	11	2	11.4
150	36	<20	52	8	52	<20	17	180	<10	<100	92	97	80	26	22	50	<50	<5	2	7.7
150	42	30	53	6	47	<20	17	240	<10	<100	98	90	80	20	21	40	<50	<5	<2	10.1
72	43	<20	39	<5	33	<20	7	940	<10	<100	61	60	50	13	6	<30	<50	18	<2	56.8
140	41	<20	48	22	52	20	11	120	<10	<100	79	79	80	17	14	<30	<50	<5	2	1.9
110	44	30	39	12	49	<20	14	87	20	<100	76	84	30	19	18	50	<50	11	2	1.3
170	78	60	71	31	75	<20	10	100	30	200	120	100	110	29	31	70	<50	11	6	1.1
120	86	60	66	<5	73	50	17	290	60	200	100	110	60	24	26	70	120	74	6	12.1
110	69	20	64	10	68	<20	18	290	10	<100	85	89	<10	18	22	50	<50	<5	3	13.6
120	53	50	64	23	58	<20	16	99	<10	<100	99	95	120	21	21	50	<50	<5	4	1.2
120	58	<20	69	<5	58	<20	13	230	20	<100	110	95	90	15	15	<30	<50	16	2	9.9
150	71	60	81	11	76	<20	21	110	<10	<100	130	130	150	23	28	50	<50	6	4	1.3
72	41	30	29	<5	38	<20	17	720	<10	100	66	70	50	14	6	40	<50	7	<2	38.0
84	53	<20	39	5	45	<20	7	720	<10	<100	57	60	40	10	10	<30	<50	<5	<2	37.7
160	79	20	83	6	74	<20	21	130	20	<100	130	120	<10	25	29	60	<50	17	3	2.7
77	28	50	48	<5	30	<20	13	1,100	20	100	65	47	<10	15	23	40	<50	<5	<2	56.8
91	47	<20	54	<5	59	<20	17	1,000	10	<100	100	91	<10	24	29	50	<50	10	2	48.4
98	46	30	52	<5	68	20	18	820	20	<100	100	110	10	25	30	60	<50	5	2	40.7
100	47	<20	50	<5	69	<20	16	800	20	<100	98	110	<10	23	27	60	<50	7	2	40.7
170	86	50	100	<5	83	110	24	400	30	<100	160	150	170	32	35	110	50	21	5	16.0

this suggests that these elements were among the most mobile during diagenesis and less affected by solubility, diffusion, and sulfide scavenging.

Geochemistry of Red Claystone above Basalt, Hole 530A

Sediments enriched in certain trace elements (especially Fe, Mn, B, Ba, As, Cd, V, Cu, Ni, Co, Cr, and Zn) by hydrothermal solutions have been reported in association with active crustal-spreading centers such as the East Pacific Rise and Galapagos Rift (Boström and Peterson, 1969; Boström et al., 1969; Boström, 1970; Dymond et al., 1973; Sayles and Bischoff, 1973; Sayles et al., 1975; Heath and Dymond, 1977; Corliss et al., 1979; Edmond et al., 1979; Spiess et al., 1980), and the Mid-Atlantic Ridge (Horwitz and Cronan, 1976; Rona, 1976; Rona et al., 1976; Varentsov, 1979). Enrichment of elements by hydrothermal solutions in sediments not associated with active spreading centers has been reported from the Philippine Basin (Bonatti et al., 1979) and in the northeast-Pacific manganese-nodule province (Bischoff and Rosenbauer, 1977). Because of the close proximity of Site 530 to the volcanically constructed Walvis Ridge, we thought that the oldest strata at that site also may be enriched in certain elements by hydrothermal activity. In order to test for hydrothermal enrichment, we collected 11 samples of red claystone of Cenomanian age from lithologic Unit 8 over a stratigraphic interval of 180 cm above basalt basement in Hole 530A.

Summary statistics of element concentrations in the 11 red claystone samples are given in Table 7, and plotted versus depth in Figure 10. The average concentration of each element in 12 samples of red claystone in lithologic Unit 8 (Table 6), not including the 11 samples within the 180-cm interval above basement, is shown by

an arrow on the plot of that element in Figure 10. Figure 10 shows that concentrations of many elements tend to increase below about 1101 m, but few elements are enriched significantly relative to their concentrations in average red claystone in lithologic Unit 8 (arrows in Fig. 10). Certainly there are no large enrichments in any elements such as Fe, Mn, Ba, and B that are characteristic of sediments and rocks altered by hydrothermal solutions (Boström et al., 1969; Heath and Dymond, 1977; Bischoff and Rosenbauer, 1977).

Another way of detecting an influence by hydrothermal solutions is to examine the relative proportions of certain diagnostic hydrothermal- and nonhydrothermalindicator elements. Figure 11 shows the relative proportions of Al, Fe, and Mn in the basal red claystone samples from Hole 530A. Fields showing the relative proportions of these elements in surface sediment from the South Atlantic Ocean (Boström et al., 1972), and in Pacific pelagic sediment, Bauer Basin sediment, and East Pacific Rise sediment (Bischoff and Rosenbauer, 1977) also are plotted in Figure 11 for comparison. The composition of red claystone above basalt in Hole 530A is slightly enriched in iron relative to South Atlantic surface sediment and Pacific pelagic sediment, but different from metalliferous, hydrothermal-enriched sediment from either the Bauer Deep or the East Pacific Rise.

The curves in Figure 12 were used by Boström (1970) to illustrate mixing of metalliferous sediments from the East Pacific Rise with either average oceanic basalt or average continental crust. Figures 11 and 12 show that the red claystone from Hole 530A and South Atlantic surface sediment are enriched in Al and depleted in Fe and Mn relative to metalliferous sediment from the East Pacific Rise.

All of the above considerations of the geochemistry of the strata above basalt at Site 530 indicate that there has been little or no enrichment of elements from metal-

Table 4A. Chemical analyses of	samples from	Leg 75,	Hole 532.
--------------------------------	--------------	---------	-----------

Sample	Core	Section	Interval	DEPTH a	I \$102	X A1203	% Fe203	I HgO	Z CaO	% Na20	2 K20	Z T102	X P205	X HnO	ppm As	ppm B	ppm Ba	ppm Be	ppm Cd	ppm Co
30012015	1	2	15	1.65	12.7	4.0	1.86	1.38	36.40	1.77	.52	.17	.11	<.02	<20	60	400	<3	<5	6
30022115	2	2	115	6.65	21.5	6.9	3.58	1.75	28.50	1.89	.96	.30	.12	<.02	<20	100	520	<3	<5	<5
30032045	3	2	45	10.35	11.5	3.3	1.34	1.19	41.90	.78	.10	.12	.09	<.02	<20	50	700	<3	<5	<5
30043113	4	3	113	16.93	25.5	8.0	3.90	2.02	24.10	2.04	1.12	.36	.15	<.02	<20	120	830	<3	<5	5
30052095	5	2	95	19.65	24.8	6.3	2.92	1.78	25.00	2.06	-85	.26	.11	<.02	30	110	840	<3	3	0
30063058	6	3	58	25.18	20.5	5.9	2.90	1.65	30.30	1.83	.93	-24	-14	<.02	<20	110	680	<3	15	10
30071079	7	1	79	26.79	34.7	4.8	2.46	1.46	23.30	2.73	.90	-22	-11	<.02	20	90	840	<3	0	
30082090	8	2	90	32.80	34.4	6.9	3.3/	1.82	21.50	2-04	1.11	- 34	.15	4.02	(20	170	540	13	is is	6
30102046	9	2	46	38.95	20.4	5.0	2.44	1.38	34.80	1.41	.76	.24	-08	<.02	<20	50	610	<3	3	<5
30102047	10	2	46	41-16	22.2	5.6	2.41	1.52	32.40	1.52	.86	.24	.08	<.02	60	80	690	<3	<5	20
30103069	10	3	69	42.89	25.2	6.5	3.23	1.73	27.20	1.70	.79	.31	.11	<.02	<20	70	850	<3	<5	<5
30113085	11	3	85	47.45	19.4	4.3	2.12	1.31	34.60	1.58	.66	.18	.10	<.02	<20	80	560	<3	0	\$
30122085	12	2	85	50.35	35.2	7.3	3.71	2.01	19.20	2.11	1.28	.35	-10	<.02	<20	110	890	(3	14	15
30131115	13	1	115	53.55	42.0	6.5	3.35	1.92	16.30	2.37	1.33	.32	*09	<.02	<20	110	860	0	0	0
30131116	13	1	115	53.55	42.3	6.4	3.35	1.88	16.30	2.30	1.35	.33	-09	<.02	40	90	830	<3	(5	<5
30143031	14	3	31	60.11	33.5	3.3	1.68	1.05	27.50	1.58	. 49	14	.07	6.02	<20	120	670	<3	(5	(5
30152060	15	2	60	63.30	38.4	9.6	4.71	2.27	12.30	2.35	1.88	.46	.12	<.02	110	120	990	<3	17	9
30161120	16	ī	120	66.80	30.1	4.6	2.17	1.29	28.10	1.76	.72	.19	.08	<.02	<20	70	800	<3	<5	<5
30173076	17	3	76	73.76	26.5	6.3	3.10	1.62	28.10	1.60	.91	.27	.10	<.02	<20	150	750	<3	<5	7
30203105	20	3	105	87.25	38.0	6.2	2.97	1.48	19.50	2.35	1.16	.27	.08	<.02	30	90	1,100	<3	<5	<5
30212001	21	2	1	89.11	42.8	10.3	4.85	2.03	9.17	2.59	2.11	.47	.12	<.02	<20	120	2,000	<3	<5	12
30222070	22	2	70	94.20	34.7	5.8	2.87	3.13	21.90	1.93	1.00	.27	+08	<.02	<20	60	340	(3	0	\$
30232065	23	2	65	98.55	26.7	4.7	2.26	1.75	30.00	1.55	.66	.20	.07	<.02	<20	120	330		0	100
30251054	25	1	54	105.74	44.2	10.9	5.74	2.28	7.32	2.36	2.35	.57	.17	<.02	<20	240	600	<3	<5	12
30272123	27	2	123	116.73	44.8	9.3	6.08	3.13	15.80	1.63	2.27	1.09	.19	.09	20	120	550	<3	CS	8
30292054	29	2	54	129.47	26.4	7.0	3.46	1.69	27.10	1.60	1.06	.32	.13	<.02	<20	70	4/0	(3	9	10
30312057 30312105	31 31	2	57	129.95	41.3	10.8	5.66	2.29	9.70 24.50	2.10	2.34	.39	.16	<.02	20	110	620	<3	<5	13
20221014	20		14	126 96	41.0	11.7	6 76	2 52	7 25	2.15	7 53	-60	.21	6.02	<70	150	720	<3	G	8
30323016	32	1	16	140.44	23.5	5.4	2.80	3.22	29.70	1.29	1.01	.27	.11	<.02	<20	60	570	3	<5	5
30341124	34	1	124	143.99	23.5	5.9	3.01	1.90	31.20	1.31	.90	.27	.11	<.02	<20	160	690	<3	16	7
30351139	35	1	139	147.70	32.4	9.3	4.75	2.00	20.60	1.68	1.68	.46	+12	<.02	30	120	690	<3	<5	13
30361110	36	1	110	155.71	22.4	5.8	3.17	1.87	31.70	1.25	.67	.25	.15	<.02	<20	50	540	<3	<5	8
30382041	38	2	41	164.90	34.5	10.1	5.30	1.95	17.40	1.76	1.99	.50	.16	<.02	<20	100	590	<3	<5	10
30403110	40	3	110	167.35	25.0	7.0	3.55	1.62	29.20	1.38	.92	.32	.10	<.02	<20	90	580	3	0	
30412065	41	2	65	168.02	25.2	6.9	3.43	1.81	29.80	1.34	1.05	.31	-11	<.02	20	170	/30	(3	15	10
30412132 30422145	41	2	132	172.55	33.7	9.0	4.53	1.97	21.20	1.54	1.68	.43	.16	<.02	<20	70	600	3	8	<5
30431070	43	1	70	181.81	29.9	7.9	3.70	1.73	24.50	1.49	1.34	.36	.15	<.02	50	90	600	<3	6	<5
30443041	44	3	41	184.75	32.2	9.4	4.72	1.94	19.20	1.67	1.71	.44	.14	<.02	<20	110	670	<3	7	5
30452045	45	2	45	193.31	15.6	4.6	2.69	3.93	35.60	.78	.41	.18	.11	<.02	<20	60	750	<3	(5	7
30472061	47	2	61	198.54	22.7	6.9	3.28	1.60	31.70	1.20	.99	.32	.12	<.02	<20	60	530	<3	<5	5
30482144	48	2	144	198.65	33.4	9.7	5.33	1.99	19.50	1.60	1.87	.49	.16	<.02	60	220	870	3	99	14
30483005	48	3	5	198.65	31.5	9.2	4.79	1.93	21.80	1.57	1.62	.46	.15	<.02	<20	120	790	0	11	10
30483006	48	3	5	201.96	31.5	9.2	4.90	1.98	21.50	1.59	1.65	.40	-16	<.0Z	30	110	650	(3	15	10
30492086	49	2	80	203.83	22.0	7.0	3.20	1.59	32.10	1.08	.84	.30	-12	C.02	<20	90	680	(3	6	10
30508015	50	8	15	208.04	38.4	11.3	5.85	2.20	14.60	1.62	2.24	.58	.13	<.02	30	150	750	3	<5	(5
30511144	51	1	44	209.85	27.6	8.2	4.04	1.70	26.30	1.47	1.38	.41	.13	<.02	<20	110	740	<3	<5	11
30512075	51	2	75	209.85	19.5	6.2	3.02	1.40	34.40	1.07	.84	.26	.11	<.02	<20	80	660	<3	<5	8
30512076	51	2	75	210.74	19.5	6.2	3.06	1.36	34.40	1.02	.90	-26	.11	<.02	<20	90	680	<3	9	7
30513014	51	3	14	211.17	18.4	5.6	2.70	1.27	36.20	1.12	.84	-24	.10	<.02	<20	120	650	<3	6	7
30518002	51	8	2	212.24	31.7	9.6	4.89	1.88	21.30	1.54	1.60	.47	.13	<.02	<20	120	720	<3	<5	10
30521064	52	1	64	214.51	16.5	5.0	2.43	1.14	37.90	.92	.58	.22	.09	<.02	<20	90	490	<3	<5	<5
30522141	52	2	141	220.81	26.6	8.2	4.44	1.91	24.20	1.60	1.30	.50	.14	<.02	<20	110	720	<3	9	14
30541081	54	1	81	222.68	12.5	3.7	1.81	.98	42.60	-61	-19	-14	.10	<.02	<20	90	540	<3	<5	<5
30592118	94	2	118	222.84	14.0	3.8	1.80	.97	41.00	./9	.35	-12	.09	<.02	<20	90	560	(3	3	<5
30332109	35	2	107	220.07	20.0	/.4	3.74	1.50	2/.00	1.35	1.14	.34	-11	1.02	(20	80	650	<3	3	3
30561100	56	1	100	229.00	19.3	5.5	2.94	3.99	32.70	-87	.75	-22	-09	<.02	<20	120	680	<3	<5	5
30571118	57	1	119	232.59	28.4	7.0	3.70	1.40	26.50	1.64	1.04	.33	.11	6.02	(20	90	680	3	G	
505/1110	51		110	232.130	*0+0	1.2	3.70	4147	20.30	1+40	1+04	.35	•11	1.02	140	30	610	0	0	

Table 4B. Chemical analyses of samples from Leg 75, Hole 532B.

Sample	Core	Section	Interval	DEPTH =	I S102	Z A1203	% Fe203	Z MgO	Z CaO	Z Na20	X K20	Z T102	Z P205	Z MnO	ppa As	ppm B	ppa Ba	ppa Be	ppm Cd	ppm C
40582093	58	2	93	238.23	20.0	5.6	2.55	1.43	35-60	1.00	.70	. 23	-09	6.02	(20	90	110	12	10	
40585000	58	8	0	239.71	25.4	6.4	3.15	1.30	30.40	1.29	.87	.27	.10	6.02	<20	130	440	0	12	0
40591080	59	ĩ	80	240.60	29.5	8.2	3.78	1 72	26 60	1.27	1 26	37	.10	(02	(20	00	590	<3	CS .	9
40592106	59	2	106	242.36	34.9	0.2	3.00	1 67	20.00	1.50	1.20	- 30		1.02	120	30	620	<3	<5	12
40592107	50	2	106	242.30	34.3	0.3	3.77	1.0/	21.60	1.30	1.44	- 30	-15	<.02	<20	110	660	<3	<5	11
40332107	39	2	106	242.30	34+/	8.2	3.95	1.66	21.60	1.46	1.48	.38	.14	<.02	<20	110	600	<3	<5	11
40613005	61	3	5	250.25	28.5	8.0	3.70	1.67	27.10	1.34	1.17	-35	.15	<.02	<20	80	620	12	15	10
40622124	62	2	124	253.94	18.5	5.4	2.50	1.28	37.20	.84	-43	.23	.11	<-02	<20	110	620	13	15	14
40641082	64	1	82	258.52	20.5	5.8	2.58	1.27	34-50	1.05	.70	23	.09	6.02	(20	60	540	63	3	
40651051	65	ĩ	51	260.21	29.3	7.8	3.75	1.60	26.00	1.49	1 20	26	13	(02	(20	140	530	3	G	0
40661085	66	1	85	264 55	21 5	6.2	3.71	1.00	20.00	1.49	1-20	. 34	-13	1.02	(20	140	680	3	\$5	29
10001005				204.33	21.5	0.2	2	1.43	34.10	1.10	+04	.24	•11	1.02	(20	10	550	3	G	0
40661086	66	1	85	264.55	21.5	6.2	2.74	1.45	34.30	1.06	.74	.24	.11	<.02	<20	80	590	(1	9	112
40668007	66	8	7	267.12	30.7	8.5	4.24	1.63	23.10	1.50	1.43	. 39	.13	<.02	<20	200	790	(3	100	11
40672061	67	2	61	269.21	26.4	7.6	3.83	1.59	27.80	1.40	1.21	.32	-12	<-02	<20	100	670	13	10	12
40681015	68	1	15	271-65	33.8	9.2	4.78	1.81	19.50	1.60	1.67	42	15	6.02	(20	80	580	13	15	
40692115	69	2	115	278.15	21.6	6.5	2.90	1 07	33.20	1 02	6.9	25	10	(02	120	70	510	23	15	-
10072115			***	210.13	41.0	0.5	2.30	1.92	33.20	1.02	.00	.23	.10	1.02	120	10	510	13	0	1
40712076	71	2	76	284.56	12.1	3.8	1.70	.99	42.80	-69	.34	.14	-09	<.02	<20	50	520	<3	<5	<5
40732014	73	2	14	289.94	17.7	5.5	2.55	1.19	36.40	.95	.76	.22	.10	<.02	<20	60	520	<3	6	(5

liferous, hydrothermal solutions. Slight increases in concentrations of several elements (e.g., Fe and Mg) and in the Fe:Al ratio in the first meter of section above basalt (below about 1101 m sub-bottom), may be the result of leaching of basalt by seawater as proposed by Bertine (1974). Such leaching probably was not very extensive and resulted only in minor enrichment of a few elements for a short distance above the contact. Lack of enrichment of Mn, B, Ba, Zn, Cu, Ni, Co, Cr, and other hydrothermal "indicator" elements suggests that introduction of metals by hydrothermal solutions venting at the seafloor was unlikely.

Table 4A. (Continued).

ppm Cr	ppm Cu	ppm Ga	ppm L1	ррш Мо	ppm Ni	ppm Pb	ppm Sc	ppm Sr	ppm Th	ppm U	ppm V	ppm Zn	ppm Zr	ppm Y	ppu La	ppm Ce	ppm Nd	ppm Dy	ppm Yb	X CaCO3
71 77 37 120 64	36 43 31 60 55	<20 <20 <20 <20 <20 <20	24 55 31 55 44	30 35 8 39 29	41 36 27 66 48	<20 <20 <20 <20 <20	6 5 (5 15 7	820 850 1,300 860 730	<10 <10 20 <10 20	<100 <100 <100 <100 <100 <100	42 74 36 80 69	54 57 71 100 65	<10 60 20 <10 50	13 11 10 22 10	<5 10 7 17 6	<30 <30 <30 <30 <30	<50 <50 <50 <50 <50	<5 7 6 <5 <5	<2 <2 <2 <2 <2 <2 <2	65.0 50.9 74.8 43.0 44.6
98 62 120 61 61	43 35 38 19 21	70 <20 50 <20 <20	47 32 59 28 33	32 23 21 12 11	61 38 62 35 34	20 <20 <20 <20 <20	13 8 11 7 <5	980 690 650 850 890	30 <10 <10 <10 <10	<100 <100 100 <100 <100	75 63 82 39 42	92 54 79 57 41	80 30 <10 10 90	23 9 18 13 10	15 9 22 <5 5	<30 <30 30 <30 <30	50 <50 <50 <50 <50	<5 <5 21 9 <5	3 <2 2 <2 <2	54.1 41.6 38.4 62.1 58.2
95 98 52 89 100	50 44 39 56 50	110 <20 <20 <20 <20 <20	55 40 26 59 40	30 16 17 24 31	51 56 30 61 63	100 90 <20 <20 30	24 7 <5 12 8	990 780 960 550 540	100 <10 <10 20 <10	600 <100 <100 <100 <100	62 57 38 86 61	81 65 50 92 92	40 60 30 80 40	28 15 7 17 13	55 <5 8 12 8	180 <30 <30 <30 <30	100 <50 <50 70 <50	52 <5 <5 25 11	6 <2 <2 2 2 <2	57.9 48.6 61.8 34.3 29.1
100 75 42 160 41	48 36 26 120 35	30 70 40 <20 <20	52 34 21 78 29	32 24 17 28 14	67 52 41 110 33	<20 <20 <20 50 <20	10 <5 8 15 <5	510 1,000 920 480 960	20 30 10 140 <10	<100 200 <100 <100 <100	68 44 32 130 49	100 48 39 130 48	80 60 <10 90 40	17 14 11 20 6	11 10 15 11 <5	30 60 <30 <30 <30	50 <50 60 330 <50	12 <5 <5 180 10	2 <2 <2 10 <2	29.1 48.7 49.1 22.0 50.2
140 81 120 75 77	44 48 68 33 28	40 <20 20 <20 50	50 36 45 30 35	15 17 27 11 7	72 53 84 37 43	<20 20 <20 <20 <20 <20	13 8 16 <5 10	990 690 330 580 1,000	<10 <10 <10 <10 10	<100 <100 <100 <100 100	61 62 72 49 39	62 77 110 56 42	<10 40 50 90 <10	18 10 23 11 12	16 <5 16 <5 17	40 <30 50 <30 40	<50 <50 <50 <50 <50	<5 14 <5 <5 <5	<2 <2 2 2 <2	50.2 34.8 16.4 39.1 53.6
180 110 96 190 130	80 44 44 80 50	20 <20 40 40 <20	61 47 44 79 44	30 15 15 24 13	93 59 55 100 78	<20 <20 <20 <20 <20 <20	22 16 9 18 15	330 590 850 410 900	<10 <10 20 10 10	<100 <100 <100 <100 <100	120 81 68 110 84	130 110 72 110 100	120 <10 70 <10 10	30 19 18 27 23	23 24 11 27 25	30 30 60 30 50	60 <50 <50 <50 <50	8 5 18 13 6	<2 <2 2 3 <2	13.1 28.2 48.4 17.3 43.7
180 71 110 140 70	100 17 41 64 40	<20 <20 100 20 <20	76 31 47 49 27	23 <5 5 11 7	98 30 41 84 35	<20 <20 <20 20 <20	17 7 <5 17 8	320 870 1,300 760 920	<10 <10 30 20 <10	<100 <100 200 <100 <100	130 50 74 97 47	120 47 69 120 56	110 20 80 30 10	24 11 22 26 13	24 <5 11 28 <5	<30 <30 60 40 <30	<50 <50 50 <50 <50	11 <5 18 <5 <5	3 <2 5 <2 <2	12.9 53.0 55.7 36.8 56.6
140 70 110 150 120	58 41 38 61 33	30 <20 100 <20 <20	45 41 61 51 37	12 <5 12 8 <5	73 34 58 84 48	<20 <20 <20 <20 <20 <20	15 8 16 18 <5	530 910 1,200 720 620	20 <10 <10 10 <10	<100 <100 300 <100 <100	81 53 81 92 60	96 63 78 120 82	70 50 90 20 70	26 10 22 27 9	17 7 13 25 <5	60 <30 80 60 <30	<50 <50 <50 <50 <50	14 <5 17 7 <5	3 <2 3 2 <2	31.1 52.1 53.2 35.0 37.9
110 130 56 87 180 160 170 84 100 190	58 63 18 25 32 65 80 37 36 79	<20 <20 20 100 60 <20 20 20 <20 <20 <20	47 61 28 40 57 67 65 42 44 55	<5 12 <5 6 13 9 8 <5 <5 <5	47 63 28 30 77 78 90 36 48 79	30 <20 <20 <20 40 <20 50 <20 <20 <20 <20	11 10 7 8 30 22 22 11 12 10	840 690 1,200 950 240 930 850 1,200 1,200 580	60 <10 10 30 <10 80 <10 <10 <10	<100 <100 <100 <100 <100 <100 <100 <100	86 89 52 56 110 97 100 60 71 100	82 84 46 43 69 120 100 57 78 120	60 80 <10 50 310 120 80 50 20 90	17 18 11 13 39 25 25 14 17 16	<5 12 18 15 36 28 19 13 17 <5	40 <30 <30 60 70 60 30 30 30 <30	110 <50 <50 <50 <50 <50 190 <50 <50 <50 <50 <50 <50 <50 <5	76 12 <5 11 47 13 99 <5 <5 <5 25	5 22 22 24 3 6 2 22 24 3 6 2 22 22	43.7 34.3 63.6 56.6 34.8 38.9 38.4 57.3 52.9 26.1
150 89 93 67 120	58 30 33 37 64	90 40 70 50 <20	61 39 41 36 56	9 10 8 8 9	60 49 34 52 57	<20 <20 20 20 <20	17 13 12 6 13	1,100 1,400 1,400 1,400 750	<10 <10 <10 <10 <10	<100 <100 <100 <100 <100	86 59 61 84 72	120 78 80 110 140	120 80 80 50 70	25 15 16 12 18	28 19 17 11 13	60 40 50 <30 30	<50 <50 60 <50 <50	5 (5 (5 (5) (5)	3 <2 3 <2 <2 <2	47.0 61.4 61.4 64.6 38.0
68 150 53 59 83	28 84 31 24 31	<20 80 30 70 <20	29 60 27 30 23	<5 20 <5 <5 <5	31 99 32 32 34	<20 <20 <20 <20 <20 <20	<5 17 <5 <5 <5	1,200 1,000 1,600 1,500 1,000	<10 <10 <10 <10 <10	<100 <100 <100 <100 <100	44 110 37 35 50	55 120 37 36 89	40 120 <10 <10 20	9 25 9 11 <5	<5 30 20 17 <5	<30 80 <30 <30 <30	<50 <50 <50 <50 <50	9 15 18 <5 <5	<2 6 2 <2 <2 <2	67.7 43.2 76.1 73.2 49.3
57 110 120	18 47 61	80 <20 50	40 57 45	<5 5 7	33 58 64	<20 20 <20	14 14 18	1,100 1,100 990	10 20 30	200 <100 500	48 70 81	35 83 92	<10 <10 40	11 18 24	18 19 10	50 <30 60	<50 <50 <50	<5 20 <5	<2 <2 <2	58.4 48.9 47.3
Table	4B. (C	ontinu	ed).																	
ppm Cr	ppm Cu	ppm Ga	ppa Li	ppm No	ppa Ni	ppm Pb	ppm Sc	ppm Sr	ppm Th	ppm U	ppm V	ppms Zn	ppm Zr	ppm Y	ppm La	ppm Ce	ppm Nd	ppm Dy	ppm Yb	I CaCO3
67 120 100 120 94	16 39 29 43 49	50 60 30 20 50	33 47 46 51 57	<5 6 <5 <5 8	27 64 49 63 49	<20 <20 <20 <20 <20 20	9 9 15 17 14	1,000 1,100 970 790 720	10 10 20 10	100 <100 <100 <100 200	45 61 84 82 70	49 59 83 99 92	40 <10 <10 <10 60	12 15 20 22 18	<5 23 23 23 19	60 30 70 50 60	<50 <50 <50 <50 <50	12 <5 5 <5 13	<2 <2 <2 2 <2	63.6 54.3 47.5 38.6 38.6
99 64 54 140 66	46 22 31 59 21	<20 60 <20 200 80	51 36 49 60 39	<5 <5 19 <5	52 29 21 72 28	<20 <20 <20 110 <20	13 <5 7 33 15	1,000 1,400 1,300 970 1,200	30 20 20 50 <10	100 <100 <100 1,200 100	81 46 59 75 58	75 40 41 97 58	60 <10 50 50 70	22 14 12 37 17	<5 21 12 63 14	50 <30 <30 230 50	50 60 <50 <50 80	29 <5 16 14 8	2 <2 <2 <2 <2 <2 2	48.4 66.4 61.6 46.4 60.9
69 150 100 120 53	22 85 58 64 22	90 100 70 <20 <20	49 84 59 47 37	<5 14 9 8 <5	28 78 68 79 21	<20 <20 <20 <20 <20 <20	7 14 11 14 7	1,300 990 1,100 640 1,100	<10 20 <10 <10 <10	100 200 <100 <100 <100	67 110 100 85 49	69 100 99 98 48	70 100 90 30 40	16 29 27 22 10	23 25 24 11 <5	70 80 70 30 <30	<50 <50 <50 <50 <50	<5 38 7 <5 <5	4 6 3 <2 <2	61.2 41.2 49.6 34.8 59.3

Geochemistry of Color Cycles at Site 532

25 40

28 38

51 52

<20 <20

The entire section recovered at Site 532 is characterized by distinct dark-light color cycles. Preliminary shipboard descriptions of the section at Site 532 noted cycles of dark- and light-colored sediment that contain abrupt changes in abundances of foraminifers and dia-

<5 <5

27

8

20

1,300 990 1,100 640 1,100

1,600

100 200 <100 <100 <100

<100

40

<10 20 <10 <10 <10

20

toms (Site 532, this volume), but these changes in microfossil abundance are not systematic within the color cycles. The concentration of CaCO₃, however, does change systematically within individual color cycles and is highest in the lighest-colored part of a cycle. Average periodicities of the color and CaCO₃ cycles are about 40,000 years (Gardner et al., this volume). The dark parts of

40 <30

18

<50 <50

<5 <5

<2 <2

76.4

14

<10 40

Figure 2. Lithologic summary, ages, paleomagnetics, and plots of concentrations of major-element oxides and CaCO₃ (in percent) and trace elements (in parts per million, ppm) in samples from Hole 530A. Duplicate analyses are indicated by two points plotted as "x" at the same depth.

Figure 2. (Continued).

Figure 2. (Continued).

Figure 3. Lithologic summary, ages, paleomagnetics, percentages of total nonbiogenic, calcareous biogenic, and siliceous biogenic components in sediment, and plots of concentrations of majorelement oxides (in percent) and trace elements (in parts per million, ppm) in samples from Hole 530B. Duplicate analyses are indicated by two points plotted as "x" at the same depth. Curves for percentages of sediment components were obtained by smoothing smear-slide data (see site summaries) using a seven-point weighted moving average. Concentrations of Na₂O have been corrected for interstitial seawater sodium (swc; see text for method of correction).

Figure 3. (Continued).

W. E. DEAN, N. L. PARDUHN

Figure 3. (Continued).

Figure 4. Lithologic summary, ages, percentages of total nonbiogenic, calcareous biogenic, and siliceous biogenic components in sediment, and plots of concentrations of major-element oxides (in percent) and trace elements (in parts per million, ppm) in samples from Holes 532 and 532B. Duplicate analyses are indicated by two points plotted as "x" at the same depth. Curves for percentages of sediment components were obtained by smoothing smear-slide data (see site summaries) using a seven-point weighted moving average. Concentrations of Na₂O have been corrected for interstitial seawater sodium (swc; see text for method of correction).

Figure 4. (Continued).

Table 5. Summary statistics for concentrations of major-element oxides and trace elements in nine samples of volcanogenic sandstone turbidites in lithologic Unit 6, Hole 530A.

Component	Min.	Max.	GM	GD
Oxide (%)				
SiO ₂	34.7	48.6	41.7	1.127
Al2Õ3	9.2	15.6	12.0	1.169
Fe2O3	7.0	13.8	10.1	1.316
MgO	2.2	8.2	4.1	1.776
CaO	3.1	17.0	8.7	2.034
Na ₂ O	1.3	4.9	2.4	1.680
K2Ô	0.22	4.73	0.73	2.752
TiO ₂	1.02	3.93	2.49	1.564
P205	0.20	0.52	0.40	1.377
MnO	0.10	0.31	0.19	1.550
Element (ppm)				
As	14	50	16	1.528
B	14	330	67	2.948
Ba	36	610	126	2.673
Be	2.1	2.1	2.1	
Cd	3.5	190	9.5	3.833
Co	16	75	43	1.659
Cr	48	350	150	2.090
Cu	44	180	95	1.616
Ga	14	120	28	2.380
Li	13	50	25	1.515
Mo	3.5	3.5	3.5	_
Ni	35	160	77	1.568
Pb	14	14	14	
Sc	13	45	27	1.460
Sr	240	450	330	1.252
Th	7	130	15	2.836
U	70	200	82	1.426
v	160	400	300	1.345
Zn	33	140	95	1.588
Zr	20	360	190	2.445
Y	15	43	31	1.391
La	24	45	31	1.304
Ce	40	140	72	1.440
Nd	35	350	61	2.045
Dy	3.5	150	20	2.756
Yh	14	10	43	1 820

Note: The minimum and maximum observed concentrations are given as Min. and Max., respectively. The geometric mean and geometric deviation are given as GM and GD, respectively. Dashes in column for GD indicate no variation in data.

cycles contain higher concentrations of clay and usually contain higher concentrations of organic carbon (Site 532, Meyers, Brassell, and Huc, and Gardner et al., all this volume). Gardner et al. (this volume) concluded that the dark beds of the dark-light cycles were not the result of carbonate dissolution, but rather some complex combination of influx of terrigenous clastic material and production of biogenic silica in response to fluctuations in global climate.

Because the dark parts of the cycles tend to be enriched in organic carbon relative to the light parts, we reasoned that there might be geochemical differences between the dark and light beds similar to differences observed between interbedded organic-carbon-rich and organic-carbon-poor Cretaceous strata at Site 530 (see discussion above), and elsewhere (Dean and Gardner,

Figure 5. Plots of concentration of biogenic and nonbiogenic SiO_2 in sediment from Hole 530B. (See text for method of computation of biogenic and nonbiogenic SiO_2 from total SiO_2 .)

1982). Ranges and geometric mean concentrations on a carbonate-free basis of trace elements and major-element oxides in 32 samples of light-colored sediment and 27 samples of dark-colored sediment from color cycles at Site 532 are given in Table 8 and plotted in Figure 13. In general, these results show that there are no major geochemical differences between dark and light sediment. The dark beds tend to be slightly enriched in several of the elements mentioned above as being enriched in Cretaceous black shales, particularly Cr, Cu, Ni, V, and Zn (Fig. 13), but these differences are not statistically significant and certainly are not so distinct as between the organic-carbon-rich and organic-carbon-poor Cretaceous strata (Fig. 7).

CONCLUSIONS

1. There has been little or no enrichment of elements from hydrothermal solutions in the red claystone overlying basalt basement at Site 530. Slight enrichments of

Figure 7. Comparison of element concentrations in 28 samples of black shale (dot), red claystone (triangle), and green claystone (square) from lithologic Unit 8, Hole 530A, Cores 87 through 105. Symbols are plotted at the geometric mean carbonate-free concentration for each element (Table 6). Bars indicate observed range of concentration for each element (Table 6). A dash at the lower end of a bar indicates that the lowest concentration of that element was below the detection limit of the instrumental method used.

Figure 6. Plots of percent diatoms, percent biogenic SiO_2 , and percent nonbiogenic SiO_2 in sediment from Holes 532 and 532B.

several elements, particularly Fe and Mg in the first meter of sediment above basalt, may be the result of leaching of basalt by seawater.

2. Black-shale beds of Albian to Coniacian age at Site 530 are enriched in Cd, Co, Cr, Cu, Mo, V, and Zn relative to interbedded red and green claystones. These elements do not, however, all have maximum concentrations in the same black shale beds, but rather have different vertical concentration gradients within lithologic Unit 8, which suggests that certain elements were more mobile than others. These gradients further suggest that Co, Ni, and Pb were most mobile, and that Cd, Zn, Mo, and V were the least mobile during diagenesis of interbedded more-reduced and less-reduced sediments.

3. Volcanogenic sandstone turbidites of Campanian age at Site 530 contain particularly high concentrations of Al, Fe, Mg, Na, Ti, P, Co, Cu, Cr, Zr, and Sc.

4. Clay-rich, carbonate-poor sections of Late Cretaceous and Miocene age are enriched in Si, Al, K, B, Zr, Y, and La that probably are concentrated in clay minerals. Concentrations are high because the clay is not diluted by either siliceous or carbonate biogenic debris.

5. Upper Pliocene to lower Pleistocene sediments at both Sites 530 and 532 contain relatively high concentrations of biogenic silica (up to 20 wt.% and 30 wt.%, respectively) that accumulated during the period of maximum upwelling and diatom productivity of the Benguela-Current upwelling system.

6. The Plio-Pleistocene sediments at Sites 530 and 532 are essentially a three-component system of biogenic silica, biogenic calcite, and nonbiogenic material (mostly clay). Most major and trace elements reside in the nonbiogenic fraction. Only Sr is associated with the carbonate fraction, and only Ba and Mo are associated with the siliceous biogenic fraction.

7. The distinct dark-and-light color cycles that persist throughout the Miocene to Holocene section at Site 532 are essentially cycles of carbonate dilution by detrital clastic material and (or) biogenic silica. The dark parts of the cycles tend to be enriched in organic carbon, but there are no distinct enrichments of trace elements in the dark beds comparable to the differences observed between organic-carbon-rich and organic-carbon-poor Cretaceous strata at Site 530 and elsewhere. Table 6. Summary statistics for concentrations of major element oxides and trace elements on a carbonate-free basis in samples of black shale, and green and red claystone from lithologic Unit 8, Hole 530A.

			D	lack				G	reen				1	Red		
C	Component	Min.	Max.	GM	GD	N	Min.	Max.	GM	GD	N	Min.	Max.	GM	GD	N
Oxid	le (%)															
	SiOa	38.8	70.2	56.7	1 148	28	56.9	72.2	63 5	1.075	27	43.3	67.5	58.2	1,127	12
	Ala	9.5	14.6	11.8	1 107	28	9.5	14.8	12.1	1 143	27	10.5	14.1	12.6	1.134	12
	FeaOa	6.6	12.0	8.5	1 164	28	5.0	12.2	77	1 235	27	7.9	12.2	10.0	1.144	12
	MgO	2.2	3 3	2.8	1 118	28	27	3.6	3.1	1 084	27	2.5	11.1	3.3	1.488	12
	NapO	1 11	1 73	1 30	1 115	28	0.92	1.75	1 41	1.166	27	1 13	1.81	1.46	1.173	12
	KaO	2 25	3 38	3.17	1 117	28	2 35	4 19	3 21	1 144	27	2.89	4.02	3.43	1,139	12
	TiOn	0.81	1.41	1.11	1 1 20	20	0.71	1.61	1 15	1 228	27	0.94	1.48	1 23	1 178	12
	PaOr	0.12	0.33	0.19	1 330	20	0.11	0.45	0.18	1 354	27	0.13	0.25	0.17	1 223	12
	MnO	0.02	0.23	0.07	1.909	28	0.03	1.58	0.16	3.010	27	0.03	1.60	0.11	3.101	12
Elem	ient (ppm)															
	As	< 20	92			19	< 20	61			6	< 20	91	_		2
	B	44	330	110	1.813	28	40	260	93	1.669	27	30	340	130	2.170	12
	Ba	270	440	660	2.582	28	300	5400	530	2.100	27	300	3200	830	2.336	12
	Be	< 3	4.0	_	_	10	< 3	3.3	_	_	5	< 3	3.0	-	—	2
	Cd	<6	114			17	<6	77	_		10	< 6	54		_	8
	Co	13	180	59	2.066	28	9.2	150	23	1.800	27	7.5	150	33	2.600	11
	Cr	57	570	180	1.989	28	48	190	90	1.453	27	58	380	112	1.805	12
	Cu	75	430	150	1.639	28	38	144	82	1.972	27	29	310	73	2.064	12
	Ga	< 20	170			15	< 20	190	_		12	< 40	120	_	_	7
	Li	25	63	42	1.313	28	25	67	44	1.294	27	10	48	31	1.560	12
	Mo	< 5	190		_	16	< 5	12	-	_	12	<7	9.1	_	_	4
	Ni	40	660	130	2 245	28	37	340	62	1 616	27	41	260	77	1.800	12
	Pb	< 20	100			10	< 20	130	_	_	6	< 20	71	_		2
	Sc	10	39	21	1.338	28	14	55	23	1.331	27	7	37	21	1.560	12
	Th	< 10	140		_	12	< 10	81	_	_	15	< 10	71	_	—	6
	v	120	2200	460	2 418	28	97	400	190	1 483	27	99	750	210	1.863	12
	Zn	68	5900	320	3 452	28	73	380	120	1 532	27	63	300	110	1.657	12
	Zr	61	290	170	1 441	28	34	340	170	1 572	27	21	280	140	2 313	11
	v	21	70	33	1 420	28	16	57	31	1 405	27	10	39	29	1 449	12
	La	82	65	32	1 471	28	19	77	36	1 354	27	6.1	57	30	1.802	12
	Ce	44	250	83	1 590	26	30	270	86	1 658	26	41	210	79	1.721	11
	Vh	2	11	5 5	1 594	25	2	77	30	1.520	24	2	8 1	46	1 532	10

Note: The minimum and maximum observed concentrations are given as Min. and Max., respectively. The geometric mean and geometric deviation are given as GM and GD, respectively. N is the total number of samples that contained measurable concentrations greater than the lower detection limit for that element or oxide. Dashes under columns for GM and GD indicate that GM and GD were not calculated because some samples were below the detection limit for that element (indicated by less-than, <, symbol in Min. column).

ACKNOWLEDGMENTS

We are grateful to J. R. Herring and M. Leinen for helpful reviews of the manuscript.

REFERENCES

- Arthur, M. A., 1979. North Atlantic Cretaceous black shales: The record at Site 398 and a brief comparison with other occurrences. *In* Sibuet, J.-C., Ryan, W. B. F., et al., *Init. Repts. DSDP*, 47, Pt. 2: Washington (U.S. Govt. Printing Office), 719-751.
- Berner, R. A., 1969. Migration of iron and sulfur within anaerobic sediments during early diagenesis. Am. J. Sci., 267:19-42.
- _____, 1975. Diagenetic models of dissolved species in the interstitial waters of compacting sediments. Am. J. Sci., 275:88-96.
- Bertine, K. K., 1974. Origin of Lau Basin Rise sediment. Geochim. Cosmochim. Acta, 38:629-640.
- Bischoff, J. L., and Rosenbauer, R. J., 1977. Recent metalliferous sediment in the North Pacific manganese area. *Earth Planet. Sci. Lett.*, 33:379-388.
- Bonatti, E., Kolla, V., Moore, W. S., and Stern, C., 1979. Metallogenesis in marginal basins: Fe-rich basal deposits from the Phillipine Sea. *Mar. Geol.*, 32:21–37.
- Boström, K., 1970. Submarine volcanism as a source for iron. Earth Planet. Sci. Lett., 9:348-354.
- Boström, K., Joensuu, O., Valdes, S., and Riera, M., 1972. Geochemical history of South Atlantic Ocean sediments since Late Cretaceous. Mar. Geol., 12:85-122.

- Boström, K., and Peterson, M. N. A., 1969. The origin of aluminumpoor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. *Mar. Geol.*, 7:427-447.
- Boström, K., Peterson, M. N. A., Joensuu, O., and Fisher, D. E., 1969. Aluminum-poor ferromanganoan sediments on active oceanic ridges. J. Geophys. Res., 74:3261-3270.
- Boyle, R. W., and Lynch, J. J., 1968. Speculations on the source of zinc, cadmium, lead, copper, and sulfur in Mississippi Valley and similar types of lead-zinc deposits. *Econ. Geol.*, 63:421-422.
- Brongersma-Sanders, M., 1965. Metals of Kupferschiefer supplied by normal seawater. *Geologisches Rundschau*, 55:365-375.
- Brongersma-Sanders, M., Stephan, K. M., Kwee, T. G., and de Bruin, M., 1980. Distribution of minor elements in cores from the Southwest Africa shelf with notes on plankton and fish mortality. *Mar. Geol.*, 37:91-132.
- Calvert, S. E., and Price, N. B., 1970. Minor metal contents of recent organic-rich sediment off South West Africa. *Nature*, 227:593–595.
- Chester, R., Griffiths, A., and Stoner, J. H., 1978. Minor metal content of surface seawater particulates and organic-rich shelf sediments. *Nature*, 275:308-309.
- Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., Von Herzen, R. P., Ballard, R. D., Green, R. D., Williams, D., Bainbridge, A., Crane, K, and van Andel, Tj. H., 1979. Submarine thermal springs on the Galapagos Rift. *Science*, 203:1073-1082.
- Cronan, D. S., 1972. The Mid-Atlantic Ridge near 45 N: XVII. Al, As, Hg, and Mn in ferruginous sediments from the median valley. *Can. J. Earth Sci.*, 9:319-323.

- Dean, W. E., and Gardner, J. V., 1982. Origin and geochemistry of redox cycles of Jurassic to Eocene age, Cape Verde Basin (DSDP Site 367), continental margin of northwest Africa. In Schlanger, S. O., and Cita, M. B. (Eds.), Nature and Origin of Cretaceous Organic-Carbon-Rich Facies: London (Academic Press), pp. 55-78.
- Dean, W. E., and Schreiber, B. C., 1978. Authigenic barite, Leg 41, Deep Sea Drilling Project, In Lancelot, Y., Seibold, E., et al., Init. Repts. DSDP, 41: Washington (U.S. Govt. Printing Office), 915-931.
- Dymond, J., Corliss, J. B., Heath, G. R., Field, C. W., Dasch, E. J., and Veeh, H. H., 1973. Origin of metalliferous sediments from the Pacific Ocean. Geol. Soc. Am. Bull., 84:3355-3372.
- Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Grant, B., Gordon, L. I., and Corliss, J. B., 1979. Ridgecrest hydrothermal activity and the balances of major and minor elements in the ocean: The Galapagos data. *Earth Planet. Sci. Lett.*, 46:1-19.
- Floyd, M. A., Fassel, V. A., and D'Silva, A. P., 1980. Computer-controlled scanning monochromator for the determination of 50 elements in geochemical and environmental samples by inductively coupled plasma-atomic emission spectrometry. *Anal. Chem.*, 52: 2168-2173.
- Goldberg, E. D., 1957. Biogeochemistry of trace metals. In Hedgepeth, J. W. (Ed.), Treatise on Marine Ecology and Paleoecology (Vol. 1): Ecology (Mem. Geol. Soc. Am.), 67:345-357.
- Heath, G. R., and Dymond, J., 1977. Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep, and Central Basin, northwest Nazca Plate. Geol. Soc. Am. Bull., 88:723-733.
- Holland, H. D., 1979. Metals in black shales—A reassessment. Econ. Geol., 74:1676–1680.
- Horwitz, A., and Cronan, D. S., 1976. The geochemistry of basal sediments from the North Atlantic ocean. Mar. Geol., 20:205-228.
- Klovan, J. E., and Miesch, A. T., 1976. Extended CABFAC and QMODEL computer programs for Q-mode factor analysis of compositional data. *Computers Geosci.*, 1:161–178.
- Lange, J., Wedepohl, K. H., Heinrichs, H., and Gohn, E., 1978. Notes about the specific chemical composition of "black shales" from Site 367 (Leg 41). *In* Lancelot, Y., Seibold, E., et al., *Init. Repts. DSDP*, 41: Washington (U.S. Govt. Printing Office), 875-877.
- Leinen, M., and Stakes, D., 1979. Metal accumulation rates in the central equatorial Pacific during Cenozoic time. Geol. Soc. Am. Bull., 90:357-375.
- Martin, J. H., and Knauer, G. A., 1973. The elemental composition of plankton. Geochim. Cosmochim. Acta, 37:1639–1653.
- Pederson, T. F., and Price, N. B., 1982. The geochemistry of manganese carbonate in Panama Basin sediments. Geochim. Cosmochim. Acta, 46:59-68.
- Rona, P., 1976. Patterns of hydrothermal mineral deposition: Mid-Atlantic Ridge Crest at latitude 26 N. Mar. Geol., 21:M59-M66.
- Rona, P., Harbison, R. N., Bassinger, B., et al., 1976. Tectonic fabric and hydrothermal activity of Mid-Atlantic Ridge crest (lat. 26 N). Geol. Soc. Am. Bull., 87:661-674.
- Sayles, F. L., and Bischoff, J. L., 1973. Ferromanganoan sediments in the equatorial east Pacific. *Earth Planet. Sci. Lett.*, 19:330-336.
- Sayles, F. L., Ku, T. K., and Bowker, P. C., 1975. Chemistry of ferromaganoan sediment of the Bauer Deep. Geol. Soc. Am. Bull., 86:1423-1431.
- Spiess, F. N., MacDonald, K. C., Atwater, T., et al., 1980. East Pacific Rise: Hot springs and geothermal experiments. *Science*, 207: 1421-1444.
- Suess, E., 1979. Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochim. Cosmochim. Acta, 43:339-352.

- Taggert, J. E., Wahlberg, J. S., and Taylor, H. E., 1980. X-ray spectrometric major-element analyses of Tephra samples from the May 18, 1980 eruption of Mt. St. Helens—Samples collected from Washington, Idaho, and Montana. U.S. Geological Survey Open-File Rept., 80-1130.
- Tourtelot, H. A., 1964. Minor-element composition and organic carbon content of marine and nonmarine shales of Late Cretaceous age in the western interior of the United States. Geochim. Cosmochim. Acta, 28:1579-1604.
- _____, 1979. Black shale—Its deposition and diagenesis. Clays Clay Miner., 27:313-321.
- Varentsov, I. M., 1979. The geochemistry of heavy metals in upper Cenozoic sediments near the crest of the Mid-Atlantic Ridge, latitude 23 N, drilled on DSDP Leg 45. *In* Melson, W. G., Rabinowitz, P. D., et al., *Init. Repts. DSDP*, 45: Washington (U.S. Govt. Printing Office), 349-377.
- Vine, J. D., and Tourtelot, E. B., 1969. Geochemical investigations of some black shales and associated rocks. U.S. Geol. Survey Bull., 1314-A.
- _____, 1970. Geochemistry of black shale deposits—A summary report. *Econ. Geol.*, 65:253-272.
- Vinogradov, A. P., 1953. The Elementary Chemical Composition of Marine Organisms. Sears Found. Mar. Res., Mem., 2.
- Volkov, I. I., and Fomina, L. S., 1974. Influences of organic materials and processes of sulfide formation on distribution of some trace elements in deep-water sediments of Black Sea, *In Degens*, E. T., and Ross, D. A. (Eds.), *The Black Sea—Geology, Chemistry,* and Biology. Am. Assoc. Petrol. Geol. Mem., 20:457-476.
- Wedepohl, K. H., 1964. Untersuchung am Kupferschiefer in Nordwest deutchland; ein Beitrag zur Deutung der Genese bituminoger Sediment. Geochim. Cosmochim. Acta, 28:305-364.

Figure 9. Plots of carbonate-free (cf) concentrations versus depth for Fe₂O₃, MnO, Ba, Co, Ni, Pb, Cr, Cu, Cd, Mo, V, and Zn in samples of black shale from DSDP Hole 530A, southern Angola basin. Concentrations of Fe₂O₃ and MnO are in percent; all other concentrations are in parts per million. The Fe:Al ratio in black-shale samples, the percentage of black-shale beds in each 9.5-m cored interval, and the mass accumulation rate (MAR; g/cm²/m.y.) of organic carbon for each 9.5-m cored interval also are plotted. The vertical line through each concentration plot is at the geometric-mean concentration for that element or oxide. All values greater than the geometric mean are shaded. The numbers (87 through 105) within the plot for percentage of black-shale beds are the numbers of each core. The two horizontal lines drawn through all plots are drawn at the top of Core 97 and the bottom of Core 98 and mark the zone of maximum black-shale-bed concentration.

Table 7. Summary statistics for concentrations of major-element oxides and trace elements on a carbonate-free basis in samples of red claystone above basalt basement in Hole 530A.

Component	Min.	Max.	GM	GD
Oxide (%)				
SiO ₂	40.5	65.5	60.0	1.145
Al2Õ3	7.3	12.9	10.9	1.167
Fe2O2	5.6	12.0	9.2	1.238
MgO	2.3	4.1	3.4	1.159
CaO	0.57	20.5	1.36	2.690
Na ₂ O	0.74	1.43	1.16	1.182
K2Õ	2.09	3.74	3.31	1.184
TiO ₂	0.58	1.11	0.94	1.190
P205	0.11	0.21	0.19	1.209
MnO	0.05	1.29	0.12	2.439
Element (ppm)				
В	50	190	75	1.464
Ba	240	470	350	1.182
Cd	3.5	94	11	3.187
Co	11	42	24	1.463
Cr	37	210	76	1.657
Cu	42	210	72	1.561
Ga	14	90	37	1.828
Li	27	60	41	1.295
Ni	47	97	74	1.211
Pb	14	20	15	1.114
Sc	15	27	21	1.186
Sr	130	380	160	1.347
Th	7	30	9	1.554
U	70	200	77	1.372
v	75	300	140	1.574
Zn	49	140	97	1.332
Zr	20	290	150	2.110
Y	24	37	31	1.154
La	12	55	33	1.471
Ce	21	180	90	1.755
Nd	35	90	43	1.450
Dy	4	25	10	2.153
Yb	3	6	4	1.307

Note: The minimum and maximum observed concentrations are given as Min. and Max., respectively. the geometric mean and geometric deviation are given as GM and GD, respectively.

Figure 10. Plots of concentrations of major-element oxides (in percent, carbonate-free), trace elements (in parts per million, carbonate-free), and the ratios Si:Al, Mn:Al, and Fe:Al in samples of red claystone immediately above basalt basement in Hole 530A. The ar row on each plot indicates the average concentration of that element or oxide in red claystone in Cores 87 through 105 (Table 6). Dashed lines on plots of the ratios Mn:Al and Fe:Al represent values of these ratios in average Pacific pelagic clay.

Figure 12. Plot of Fe/Ti and Al/Al + Fe + Mn ratios for samples taken above basalt basement in Hole 530A. Curves represent mixing of average oceanic basalt material and average continental crustal material with metalliferous sediment from the East Pacific Rise (EPR). Modified from Boström (1970). Ranges of values from surface pelagic sediments from the South Atlantic are from Boström et al. (1972).

Figure 11. Triangular diagram showing relative concentrations of Al, Mn, and Fe in samples taken above basalt basement in Hole 530A. Areas representing ranges in concentrations of Al, Mn, and Fe in sediments from the Bauer Deep, East Pacific Rise (EPR), and Pacific pelagic sediments (PPS) are from Bischoff and Rosenbauer (1977). Ranges representing surface pelagic sediments from the South Atlantic are from Boström et al. (1972).

Table 8. Summary statistics for concentrations of major-element oxides and trace
elements on a carbonate-free basis in samples of dark and light sediment from
dark-light color cycles in Holes 532 and 532B.

		1	Dark					Light		
Component	Min.	Max.	GM	GD	N	Min.	Max.	GM	GD	N
Oxide (%)										
SiO ₂	36.3	59.7	50.0	1.098	27	42.8	66.2	53.4	1.097	32
Al ₂ O ₃	9.1	15.5	13.4	1.154	27	6.5	16.4	12.9	1.263	32
Fe2O3	4.7	8.2	6.8	1.173	27	3.3	8.5	6.3	1.269	32
MgO	2.4	3.9	3.1	1.111	27	2.1	10.8	3.8	1.408	32
Na ₂ O	2.2	5.1	2.9	1.202	27	2.1	4.1	2.9	1.173	32
K ₂ Õ	1.5	3.0	2.3	1.233	27	0.4	3.2	1.7	1.496	32
TiO ₂	0.45	0.88	0.65	1.193	27	0.27	1.52	0.57	1.351	32
P205	0.13	0.31	0.21	1.261	27	0.13	0.42	0.24	1.335	32
Element (ppm)										
в	110	350	190	1.321	27	99	380	210	1.444	32
Ba	690	2400	1200	1.282	27	560	2800	1400	1.385	32
Co	<8	25	15	1.399	20	<10	47	17	1.444	20
Cr	120	280	210	1.251	27	82	280	170	1.342	32
Cu	49	150	94	1.310	27	36	130	73	1.381	32
Li	45	120	82	1.272	27	40	130	85	1.312	32
Mo	<10	86	26	1.841	24	<11	71	26	1.544	21
Ni	67	170	110	1.224	27	44	150	91	1.319	32
Sc	<11	46	22	1.455	25	15	57	23	1.397	32
v	86	190	130	1.242	27	63	240	124	1.304	32
Zn	110	230	160	1.225	27	77	310	140	1.395	32
Zr	< 31	480	110	1.838	23	<18	220	92	1.040	23
Y	<14	60	32	1.410	26	12	66	30	1.399	32
La	<10	55	27	1.634	22	<12	130	34	1.680	25
% CaCO ₃	13	65	34	1.526	27	28	76	54	1.226	32
Si:Al	3.16	6.59	3.72	1.196	27	3.15	10.24	4.16	1.351	32

Note: The minimum and maximum observed concentrations are given as Min. and Max., respectively. The geometric mean and geometric deviation are given as GM and GD, respectively. N is the total number of samples that contained measurable concentrations greater than the lower detection limit for that element or oxide.

Figure 13. Comparison of element concentrations in 32 samples of light-colored sediment (open dots) and 27 samples of dark-colored sediment (solid dots) from dark-light color cycles in Holes 532 and 532B. Symbols are plotted on the geometric mean concentration, on a carbonate-free basis, for each element (Table 8). Bars indicate observed ranges of element concentrations (Table 8). A dash at the lower end of a bar indicates that the lowest concentration of the element was below the lower detection limit of the instrumental method used.